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Abstract

We examine whether large language models (LLMs) can predict bi-
ased decision-making in conversational settings, and whether their
predictions capture not only human cognitive biases but also how
those effects change under cognitive load. In a pre-registered study
(N = 1,648), participants completed six classic decision-making tasks
via a chatbot with dialogues of varying complexity. Participants
exhibited two well-documented cognitive biases: the Framing Effect
and the Status Quo Bias. Increased dialogue complexity resulted in
participants reporting higher mental demand. This increase in cog-
nitive load selectively, but significantly, increased the effect of the
biases, demonstrating the load-bias interaction. We then evaluated
whether LLMs (GPT-4, GPT-5, and open-source models) could pre-
dict individual decisions given demographic information and prior
dialogue. While results were mixed across choice problems, LLM
predictions that incorporated dialogue context were significantly
more accurate in several key scenarios. Importantly, their predic-
tions reproduced the same bias patterns and load-bias interactions
observed in humans. Across all models tested, the GPT-4 family
consistently aligned with human behavior, outperforming GPT-5
and open-source models in both predictive accuracy and fidelity
to human-like bias patterns. These findings advance our under-
standing of LLMs as tools for simulating human decision-making
and inform the design of conversational agents that adapt to user
biases.

CCS Concepts

« Human-centered computing — Natural language interfaces;
Empirical studies in HCI; « Computing methodologies —
Discourse, dialogue and pragmatics; Interactive simulation;
Artificial intelligence; Cognitive science.
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1 Introduction

Digital interfaces influence almost every aspect of modern life. They
mediate interactions with loved ones, transport, medical checkups,
entertainment, and sometimes even food and intimate choices. The
function and form of these interfaces influence not only our view
of the world, but also how we influence the world. Our decisions
on which action to take, which option to ignore, and what aspect
of a problem to pay attention to are all affected by the contextual
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elements within which the decision scenario appears. In particu-
lar, conversational interfaces now act as decision mediators across
multiple domains, shifting the structure, presentation, and inter-
pretation of available alternatives.

In its simplest form, decision-making requires a choice problem
and a set of alternatives to choose from. The structure and presen-
tation of these alternatives can potentially shape decision-making
by tapping into underlying cognitive biases. Cognitive biases are
systematic deviations from rational judgment, arising from heuris-
tics, prior experiences, emotions, or social factors [28]. Over 200
such biases have been systematically cataloged and experimentally
validated through standardized cognitive tasks [43]. While these
biases have been studied extensively in static, survey-based, or GUI-
mediated settings, relatively little is known about their manifesta-
tion in interactive, language-based environments like task-oriented
dialogues. Early work suggests that biases persist even in conversa-
tional settings [2, 42, 60], yet we lack a systematic understanding
of how the dynamics of dialogue shape bias susceptibility.

In decision theory, the process of decision-making requires the
presence of an actor, denoted as the decision-maker, and a con-
textual environment within which the decision transpires [48].
Although cognitive biases originate from internal heuristics, they
can be influenced by external environmental factors, such as cog-
nitive load [7]. In conversational settings, such as task-oriented
conversational agents, decision-making occurs within the context
of a dialogue. In this setting, cognitive load arising from prior con-
versational context can potentially influence users’ biased decision-
making. We refer to such contextual influence as dialogue complex-
ity. This complexity may act as a proxy for cognitive load, shaping
the likelihood of biased decision-making. Leveraging the conver-
sational context can help in accurately predicting when users are
likely to be susceptible to cognitive biases. This opens the door to
adaptive interventions that promote more informed, deliberate, and
rational decisions.

Simulation and prediction of human behavior has long been
a goal of research in Human-Computer Interaction (HCI), cogni-
tive science, and behavioral modeling [25]. Large language mod-
els (LLMs) have been fine-tuned to produce fluent, human-like
dialogue and frequently achieve high performance on established
benchmarks [62]. This advancement presents opportunities beyond
conventional applications, such as LLMs or generative agents, by
enabling the simulation of large-scale human behavior in both
experimental and policy contexts [1, 4, 24, 40, 41]. Of particular
interest is the question of whether LLMs can serve as predictive
models of human judgment and decision-making. That is, not just
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in mimicking language patterns, but simulating how contextual
and cognitive factors drive biased behavior.

Prior work has primarily examined whether LLMs themselves ex-
hibit cognitive biases when prompted to make decisions [15, 25, 33].
While informative, this line of research focuses on the presence
of biases within LLMs, rather than their ability to model or pre-
dict human-biased behavior. A notable exception is Ying et al. [63],
who used LLMs to simulate human decision-making but found
substantial misalignment between model predictions and human
rationality; however, cognitive biases were not the main focus of
their work. Park et al. [41] introduced a method that enables behav-
iorally grounded predictions by constructing generative agents with
rich, interview-derived memory representations. These agents have
demonstrated strong predictive accuracy across surveys, personal-
ity assessments, and experimental tasks by simulating individual-
level responses. These advances raise a key question: can LLMs
simulate decision-making behavior that is not only human-like but
also bias-sensitive and context-aware? Building on this approach,
we investigate whether LLMs can simulate individuals given the
chat transcripts such that the predictions on biased decision-making
align accurately with those of their real-world counterparts.

To achieve this, we begin by investigating whether cognitive
biases manifest in conversational settings, as prior research
has primarily focused on isolated or survey-based tasks. This leads
to our first research question (RQ1): Do established cognitive bi-
ases (Framing and Status Quo effects) manifest in conversational
decision-making settings? While this investigates the presence of
biases, it does not account for how they may be shaped by the
conversational context. To understand the role of conversational
context, we next examine whether features like prior dialogue
complexity systematically interact with the bias. This motivates
(RQ2): How does prior dialogue complexity interact with cognitive
bias susceptibility? Building on this, we ask whether LLMs can
predict human decisions across such contexts using limited in-
formation, forming (RQ3): Can LLMs predict individual human
decisions using limited prior dialogue and demographic information?
The accuracy of individual-level prediction does not reveal whether
LLMs capture the presence of cognitive biases in the population. A
model might consistently choose the biased alternative, inflating
accuracy while misaligning with the true distribution of human
responses. To investigate this, we evaluate whether LLMs can re-
produce population-level bias effects and their interaction with
dialogue complexity. Therefore, we finally explore whether LLMs
can simulate collective behavior by reproducing not only the
presence of biases but also how they interact with dialogue complex-
ity. This brings us to (RQ4): Can LLMs reproduce both the presence
of cognitive biases and their interactions with dialogue complexity at
the population level (collective behavior)?

This paper addresses these questions through two empirical stud-
ies. First, we conduct controlled human-subject experiments (N =
1,648) using six well-established choice problems adapted for con-
versational settings. The choice problems are chosen to investigate
prominent Framing and Status Quo effect cognitive biases. These
cognitive biases are chosen as they are well-studied and replicated
in the HCI, psychology, and behavioral economics literature. These
studies systematically manipulate choice problems and prior dia-
logue complexity to examine their influence on Framing and Status
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Quo biased decision-making. The methods and findings are detailed
in the Human Experiments section ( 3). Building on these human
results, we then evaluate multiple LLM families by prompting them
to simulate human decision-making under identical conditions.
Specifically, we assess LLMs’ ability to predict both individual-level
decisions and sample-level bias patterns using participant demo-
graphics and dialogue transcripts, along with ablation analyses. The
methodology and results are presented in the LLM Experiments
section ( 4). Finally, the Discussion section ( 5) outlines results and
discusses the implications for bias-aware interaction design and
LLM Simulation for HCL

2 Related Work

We review the related works in the following two key areas: a) cog-
nitive bias and load in conversational agents, and b) LLM behavioral
modeling capabilities.

2.1 Cognitive Biases in Decision-making
Facilitated through Conversational Agents

Cognitive biases in human decision-making have been examined
closely in the fields of Psychology, Behavioral Economics, and
Human-Computer Interaction. Recent research has examined their
potential to both leverage and mitigate such biases [10] using con-
versational agents. Ji et al. [26] studied cognitive biases in spoken
conversational search (SCS), highlighting biases like anchoring and
confirmation bias in the absence of visual cues. Their framework
is largely theoretical but sets the stage for future bias-mitigation
strategies in voice-based systems. Pilli [42] used chatbots to assess
cognitive biases like Framing effects and Loss aversion. Participants
exhibited typical bias responses, confirming chatbots as valuable
tools for bias detection and measurement. Yamamoto introduced
“suggestive endings” in chatbot dialogue, based on the Ovsiankina
effect [60]. This design prompted users to engage more deeply, ask
follow-up questions, and reflect longer, enhancing cognitive engage-
ment. Dubiel et al. [14] examined the role of synthetic voice fidelity
in decision-making. They found that high-fidelity voices, through
cues like pitch and pace, enhanced source credibility and triggered
affect heuristics, subtly influencing user choices. Ali Mehenni et al.
[2] explored children’s susceptibility to tasks resembling cognitive
tasks used to infer cognitive biases by conversational agents and
robots using a modified Dictator Game. Their findings revealed a
stronger influence from artificial interlocutors than humans, point-
ing to authority and social influence biases, especially among vul-
nerable users. Kalashnikova et al. [29] investigated linguistic nudges
promoting ecological behavior. By leveraging biases such as Status
Quo bias and social conformity, they showed that chatbots and
robots were more persuasive than humans in shaping opinions.

2.2 Language and Cognitive Load in Dialogue
Systems

Prior work has examined how cognitive load influences decision-
making broadly (e.g., Deck and Jahedi [12], Sweller [50]). Khare
et al. [30], who explored how internal characteristics of the choice
problem, such as information overload and choice overload, can im-
pact Status quo bias. However, their focus is on the structure of the
alternatives themselves. Experimental studies have examined the
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Framing effect under cognitive load and found supporting evidence
for dual-process theory, suggesting that cognitive load increases the
influence of framing on decision-making [7, 57] It has been demon-
strated that cognitive load is inversely related to task performance
facilitated by the chatbot. Schmidhuber et al. [47] explored how
the use of a chatbot affects users’ mental effort when interacting
with a new software product, and also to what extent the use of a
chatbot affects users’ productivity. The results showed that chatbot
users experienced less cognitive load. Similarly, Brachten et al. [8]
showed that chatbots can reduce the cognitive load needed to com-
plete various tasks. One effective strategy to minimize cognitive
load is to avoid presenting long responses or requiring users to
provide complex inputs. The cognitive load induced by the dialogue
is dependent upon the dialogue design. By increasing the elements
and interactions between the elements, mental demand increases in
turn, leading to a higher cognitive load. A poorly designed dialogue
can result in cognitive load. These studies have explored various
aspects of conversational agents, like linguistic features, the affect
caused by dialogue voice modulation, the length of dialogue, and
their role in influencing decision-making. However, these studies
focus on individual decision points or choice problems only; they do
not account for how previous interactions, conversational context,
or prior dialogue influence biases in subsequent decision-making.

2.3 LLM Behavioral Modeling

Current research establishes that LLMs can reproduce aggregate
bias patterns [15, 25, 33] but has not systematically investigated
whether these models can predict individual decision-making, based
on conversational cues and demographic information, particularly
under varying cognitive load conditions. While LLMs demonstrate
human-like biases when prompted appropriately, their capacity
for individualized behavioral prediction in conversational contexts
remains largely unexplored. This gap motivates our investigation
into whether LLMs can serve as predictive tools for biased hu-
man behavior in realistic conversational scenarios, moving beyond
surface-level bias reproduction toward contextually sensitive indi-
vidual behavioral modeling.

3 Human Experiments

In investigating the first two research questions, we design a di-
alogue that follows a real-world task-oriented dialogue structure
and facilitates decision-making, yet ensures experimental control
and ecological validity by standardizing dialogue content and con-
trolling for confounding variables. A formal representation of our
dialogue D with a choice problem and prior dialogue is as follows:

_ f,,SYs usr Sys usr _ Sys _ usr
D_{ul Uy 5o Uy Zgse e s U1, Uy ,u[+1...}
[
Prior Dialogue ~ Decision
Scenario
and
Response

This section outlines the choice problems adapted from classical
behavioral economics studies, explains their integration into the
chatbot with consistency and experimental control, describes the
preceding Simple and Complex Dialogues, and details the experi-
ment design and procedure.

3.1 Choice Problems

The chatbot is designed to have introductory utterances like greet-
ings {u;”*,..u3*,...}e¢ D, which are followed by prior dialogue
{u;ﬁ ..., uy* Ye D, and which is then followed by a choice prob-
lem u;”*¢ D . A choice problem typically involves a decision-
making problem accompanied by a set of alternatives from which
participants must choose. In traditional experimental designs, a
questionnaire format is used for a between-subjects experiment
to investigate the biases. We adapt the same experiment design
where a control group is presented with a version of the choice
problem where alternatives are described neutrally, while the treat-
ment groups encounter scenarios in which one option is explicitly
framed. The effect of respective cognitive bias is determined by
analyzing the statistical difference in participant responses u;*" € D
between these groups.

Our experiments adapted six choice problems, three targeting
classic Framing effects (Risky-choice Framing [52], Attribute Fram-
ing [31], and Goal Framing [3]) and three Status quo bias scenarios
(Budget allocation, Investment decisions, and College job offers)
which are drawn from Samuelson and Zeckhauser [46]. These prob-
lems are well-established in the literature and have been reproduced
in recent replication studies [7, 59].

3.1.1  Framing Choice Problems. Our experiments used three choice
problems, each representing a different type of framing effect: Risky-
choice, Attribute, and Goal framing. The choice problem for Risky-
choice framing effect was adapted from choice problems described
in a replication study by Bogdanov et al. [7]. The original study was
performed by Wang [56]. The choice problem follows the popular
Asian Disease Problem by Tversky and Kahneman [53]. Participants
choose between two plans (Plan A and Plan B). The participant’s
choices reveal the framing effect. The Attribute framing problem in-
volved restaurant selection and was adapted from Kuang et al. [31],
where the same distance was described either in miles (Space) or
minutes (Time), showing that people’s preferences change depend-
ing on how the information is framed. The Goal framing choice
problem was adapted from Aravind et al. [3], which tested how dif-
ferent goal-based cues influence public transit adoption. We selected
the normative frame, highlighting environmental sustainability to
encourage eco-conscious decisions. Participants choose between
two travel modes (Public Transit and Personal Car) for a 10-mile
trip, with or without any sustainability-related information as a
framing cue. We refer to the framing effect-related choice prob-
lems for the control group as “Framed”, and for the experimental
group as “Alternatively Framed.” The complete set of framing choice
problems is presented in Table 9 of Appendix A.

3.1.2  Status Quo Choice Problems. The experiment used three
decision-making scenarios or choice problems adapted from: Bud-
get allocation (BA), Investment decision making (IDM), and College
job offers (CJ) Samuelson and Zeckhauser [46]. These choice prob-
lems were selected due to their well-documented effects, serving as
strong baselines for evaluation. These were additionally reproduced
in the replication study by Xiao et al. [59]. Moreover, they repre-
sent domains that are both widely studied in behavioral economics
and highly relevant to practical applications in chatbot-based e-
commerce and decision support systems. Each choice problem was



implemented in three conditions: a neutral condition, where the
alternatives were presented equally with no status quo option, and
two Status Quo conditions, where one of the alternatives was framed
as status quo. The decision maker can move away from the status
quo or stick to the status quo, which reveals the bias. While adapt-
ing to conversational style, we have made minor modifications to
the original choice problems. We refer to the Status Quo-related
choice problem condition for the control as “Neutral” and experi-
mental conditions as “Status Quo A” or “Status Quo B” based on the
alternative in the status quo position. The list of choice problems
for all conditions is detailed in Appendix A.2. We made minor mod-
ifications to the choice problems, which we report in Appendix A.3.

3.2 Prior Dialogue

A key feature of decision-making in a conversational setting is
the presence of dialogue that precedes the decision scenario or a
choice problem. We refer to this as the prior dialogue, denoted as
{u;?},...,uj*1} € D, where D represents the full dialogue. To in-
vestigate our second research question (RQ2) that is the complexity
of prior dialogue can potentially play a role in shaping subsequent
decision-making we designed two types of preference elicitation
tasks: one that facilitates low-effort interaction, referred to as the
Simple Dialogue, and another that is cognitively demanding, re-
ferred to as the Complex Dialogue. The design characteristics of
these tasks are as follows:

3.2.1 Simple Dialogue. A preference elicitation task was used,
where participants were engaged in a set of short binary (Yes/No)
questions about preferences within a familiar domain. This dialogue
design was inspired by the Schema-guided Dialogue (SGD) dataset
introduced by Rastogi et al. [45] and aimed to simulate a natural,
ecologically valid, low-effort interaction with the chatbot. Impor-
tantly, the Simple Dialogue used a conservative dialogue strategy:
questions were direct, unambiguous, and did not require reasoning
or memory beyond the current turn. This ensured that the men-
tal effort required by the dialogue was minimal. Participants were
instructed to answer each question directly and were prompted
to enter “I don’t know” for prior dialogue attention check on one
attribute. A full list of domains and associated questions can be
found in the Section B.1 of Appendix B. An example of the Simple
Dialogue in the “Music” domain is shown below.

Table 1: Simple Dialogue Attributes and Respective Utter-
ances

Attribute Yes/No Question

Genre Preference Do you like listening to pop music?

Do you prefer music with lyrics in
English?

Are you interested in live music
performances?

Instruments Focused Do you enjoy instrumental music?

Do you like music from specific artists?
Please enter “I don’t know” only.

Do you prefer music from the 90s?

Language of Lyrics

Live Performances

Artist-Specific
Era (e.g., 80s, 90s)
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3.22 Complex Dialogue. The Complex Dialogue was designed to
induce cognitive load in a controlled yet ecologically valid manner.
To achieve this, a nested referential structure is used to manage
multiple interdependent entities across a multi-turn dialogue. The
following shows an example of the utterances from u:ﬁ to u,”; by
the chatbot during the prior dialogue.

2¥%: The first artist performs three live shows, is paid 2000 units

per show, and has a 4-star rating. The second artist performs
twice as many shows, with the same pay and rating. Which
artist do you prefer, and why?

uﬁz The third artist performs the same number of shows as the
second, earns half the pay of the first artist, but has the
same rating as the first. Which artist do you prefer, and
why?

ufgi: The fourth artist performs the same number of shows as
the second, earns the same pay as the third, but has two
stars less than the first artist. Which artist do you prefer,
and why?

;%> Remember the details of the fourth artist. Specific informa-
tion will be requested later.

u

The fourth artist in the chat transcript is defined by the second
and third artists, which reference the second and first artists, cre-
ating a chain of dependencies. This design necessitates users to
maintain and integrate hierarchical relationships between entities,
thereby increasing semantic integration costs and working memory
demands. This was designed based on the psycholinguistic findings
that nested dependencies elevate processing difficulty [19, 55]. Addi-
tionally, the reappearance of earlier referents after intervening turns
results in high referential distance [11], which further taxes mem-
ory retrieval processes [5]. From a cognitive load design standpoint,
this structure directly aligns with Sweller’s Cognitive Load The-
ory (CLT), which distinguishes between intrinsic load (task-related
complexity), extraneous load (inefficient information presentation),
and germane load (effort used for schema building) [12, 50].

Our design increases intrinsic load by requiring participants to
track and integrate multiple interrelated referents, and germane
load by promoting mental model construction to resolve semantic
dependencies across turns. From a dialogue systems perspective,
managing multiple entities simultaneously while maintaining co-
herent context is a well-documented challenge, particularly when
entities are interconnected or revisited [17, 54]. This reflects real-
world conversational demands where dialogue agents must track,
differentiate, and link multiple referents simultaneously. Our Com-
plex Dialogue task is a preference elicitation task that necessitates
arithmetic comparisons between attributes and memorization of
outcomes, requiring additional mental effort. Similarly designed
dialogues are used in other domains, including artist recommen-
dations, streaming services, calendar apps, and banking options.
(For the remaining complex dialogues, please refer to Table 11 in
Section B.2 of Appendix B).

The domains of these tasks are adopted from the Schema-Guided
Dialogue (SGD) dataset [45]. In theory, the task design must substan-
tially increase the cognitive load of the individual. To empirically
verify the cognitive load, the standard NASA-TLX [39] survey was
adopted for all the interactions. To evaluate the cognitive load of the
prior dialogue, we incorporated two indicators: the self-reporting
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NASA-TLX and a Recall Task. The NASA-TLX was recorded after
the chatbot interactions to capture participants’ perceived cognitive
load across multiple dimensions, such as mental demand and effort.
Simultaneously, the Recall Task served as a behavioral indicator of
attention and memory. Participants were asked to recall memorized
arithmetic from the conversation. Additionally, we also investigate
the familiarity of the participants with prior dialogue domains as a
confounding factor.

3.3 Chatbot Technical Details

The web-based experimental interface was developed using Stream-
lit [49], which allowed for easy deployment and consistent access
across devices. The source code for the chatbots used in the exper-
iments is publicly available. The chatbot used in the framing ex-
periment can be found at https://github.com/stephen-pilli/PEM.git,
while the chatbot used in the status quo bias (SQB) experiment is
available at https://github.com/stephen-pilli/exp-status-quo-bias.
git.

GPT-40 Mini, a large language model [37], was used to create
realistic and coherent chatbot interactions based on structured
prompts designed for each condition. An example of the prompt
used for the agent (LLM chatbot) is provided in Appendix H.

3.4 Design of the Experiments

We employed a two-factor between-subjects design. The first factor
is the prior dialogue complexity, which manipulated the cognitive
load experienced by participants before making a decision. The
second factor is the choice problem condition (Recall the conditions
for Framing and Status quo detailed in Section 3.1).

For the Framing experiments, we employed a 2 x 2 experiment
design. The first factor was dialogue complexity with two levels
(Simple vs. Complex), and the second factor was framing with two
levels (Framed vs. Alternatively Framed). Participants were ran-
domly assigned to one of the four conditions, ensuring balanced
group sizes. For the Status quo experiments, we employed a 2 x 3
factorial design. Dialogue complexity again had two levels (Simple
vs. Complex), while the Status Quo factor had three levels (Neutral,
Status Quo A, Status Quo B). Participants were randomly assigned
to one of the six resulting conditions, with balanced distribution
across groups. To preserve internal validity and avoid carryover ef-
fects, each participant encountered only one version of the dialogue
and one framing condition.

The primary dependent variable in our study is participants’
choices between alternatives in the choice problems. All six choice
problems were included in the experiment. Decision outcomes were
compared across bias conditions to address our research questions.
Our second key variable is a moderator: the cognitive load required
to complete the task. We measured cognitive load using the NASA-
TLX questionnaire as well as behavioral indicators. This variable
allowed us to statistically test whether complex dialogues place
greater mental demands on participants compared to simple di-
alogues. To avoid confounding effects, the domains of the prior
dialogues and the choice problems were intentionally different.
This separation ensured that cognitive load was isolated from other
factors, such as domain familiarity, and allowed us to focus on how
dialogue complexity influenced subsequent decision-making.

While our dialogue tasks were adapted from classic behavioral
economics experiments, we carefully designed them to preserve
ecological validity by embedding the decision-making within natu-
ralistic, task-oriented chatbot interactions. This ensured that par-
ticipants experienced the scenarios as they would in a real conver-
sational setting with an intelligent agent, rather than as isolated
survey questions. At the same time, we maintained experimental
control by standardizing dialogue length, turn-taking, and framing
conditions across participants. This allowed us to capture bias-
prone decision-making in a realistic human-agent interaction con-
text, while still ensuring internal validity and replicability of the
results.

3.5 Power Analysis, Recruitment, and Data
Integrity

We conducted an a priori power analysis using G*Power [18], tar-
geting 0.80 power to detect a medium effect size (w = 0.3, @ = 0.05)
following Pancholi et al. [38]. This required approximately 42 par-
ticipants per condition (see Appendix C). Participants (N=1648)
were recruited via Prolific [44], compensated at $8/hour, and ran-
domly assigned to 2x2 (Framing) or 2x3 (Status Quo) designs. The
studies were preregistered on the Open Science Framework (OSF).
The preregistration for Framing study is archived at https://doi.org/
10.17605/OSF.IO/DPR45, and the preregistration Status quo study is
archived at https://doi.org/10.17605/OSF.IO/PSXVF. Data integrity
was ensured through attention checks, recall tasks, and automated
JSON-based logging. The dataset for Framing effect study is avail-
able at https://doi.org/10.5281/zenodo.18218753, and the Status quo
bias study is available at https://doi.org/10.5281/zenodo.16541481.

3.6 Procedure

Participants began the study by reviewing an information sheet out-
lining the study’s purpose, procedures, and ethical considerations.
After reading the document, they were directed to the experiment’s
homepage, where their Prolific ID (Stored in an irreversible, anony-
mous state) was displayed alongside the consent form.

To ensure active participation, the consent checkbox was ini-
tially unchecked, requiring participants to explicitly select “Yes”
before proceeding. Only after providing informed consent were
they granted access to the experiment. Participants interacted with
the chatbot based on the condition they are randomly assigned to
as shown in the Figure 1. After completing the dialogue with the
chatbot, participants were redirected to a questionnaire containing
additional measures to ensure data quality. The survey included a
memory recall task to assess attentiveness, along with attention
check questions to verify engagement. By implementing these steps,
the study ensured that participants remained actively engaged and
provided high-quality responses, ultimately enhancing the relia-
bility of the collected data. After each task, participants reviewed
their transcript and then completed the NASA-TLX survey. In both
the Simple and Complex Dialogue conditions, participants rated
their perceived mental demand. This design minimized recall bias
and enabled a precise assessment of the mental demands imposed
by dialogue complexity.
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Figure 1: Experimental procedure outlining the sequence of tasks. Participants were first introduced to the dialogue (Simple or
Complex), followed by the assigned condition (Framing: Framed vs. Alternative Framing; Status Quo: Neutral, A, or B). After
completing the choice problem, participants filled out the NASA-TLX and post-task questionnaires (recall, familiarity, attention

checks, and tool usage).

3.7 Findings

3.7.1 Dataset Description. For the Framing study, the initial sam-
ple of 595 participants was filtered based on familiarity ratings,
attention checks, prior exposure to the choice problem, invalid re-
sponses, and missing NASA-TLX data, resulting in a final sample
of 548. The mean age was 43 years (SD = 13.7). The dataset is a
slightly female-skewed sample (53.5%) and a majority identifying
as White (86.5%). Most participants were not students (72.1%) and
were employed either full-time (46.5%) or part-time (18.1%). De-
tailed demographic distributions across experimental conditions
are presented in Table 12 in Appendix D.

For the Status quo study, an initial sample of 1,256 participants
underwent data cleaning, which excluded 19 for invalid responses,
40 for failing scenario recall, 49 for prior familiarity, and 63 for
using external tools, resulting in a final sample of 1,100 participants.
The mean age was 41.5 years (SD = 13.3), with an even gender
distribution (50.5% female). Most participants were residents of the
United Kingdom (n = 778), followed by the United States (n = 308)
and Ireland (n = 14). Full demographic breakdown for the Status
quo experiment is provided in Table 13 in Appendix D.

3.7.2  Framing and Status Quo effects reproduced in Conversational
Setting. Table 2 presents evidence across six choice problems that
addresses RQ1 and RQ2. RQ1 investigates whether Framing and

Status quo effects can be reproduced in a conversational setting;
several strong and moderate effects were observed. Risky-choice
framing showed a strong effect under complex dialogue but only a
weak effect under simple dialogue, which is comparable to the orig-
inal study by Wang [56]. Attribute framing showed a robust effect
in the literature [31]; however, the same did not replicate strongly
in this conversational setting; only weak evidence appeared un-
der simple dialogue, and no effect under complex dialogue. Goal
framing produced the clearest result, with a strong effect both in
the original study and under complex dialogue, and a weak effect
in simple dialogue. The Status quo scenarios (budget allocation,
investment decisions, and college jobs) showed mixed evidence:
budget allocation and college jobs replicated strongly under both
dialogue types, while the investment decision scenario showed
no effect. Overall, these results address RQ1, demonstrating that
several well-documented Framing and Status Quo effects persist
in conversational settings, though their strength varies across the
choice problems.

3.7.3  Prior Dialogue Complexity Resulted in Cognitive Load. Across
both the Framing and Status quo experiments, NASA-TLX results
consistently showed that Complex dialogues resulted in signifi-
cantly higher cognitive load than Simple dialogues. Mental De-
mand increased most strongly (d = 0.85 — 1.08, p < .001), followed
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Table 2: Summary of human experiment results. The table reports effect sizes (Cohen’s h with 95% CI), p-values, and significance
tests for detecting cognitive biases (H1) and their interaction with dialogue complexity (H2). Results are organized by cognitive
bias (Framing Effect, Status Quo Bias) and choice problem. The tickmark (v') indicates evidence supporting the hypothesis,

while cross (X) indicates no support.

Bias Interaction With
Cognitive Bias Choice Problem Study Cohen’s h [95% CI] p-value Dialogue
Found (RQ1) K
Complexity (RQ2)
Wang [56] 0.193 [-0.061, 0.447]  0.458 X
Risky Choice Simple Dialogue 0.205 [-0.001, 0.410]  0.392 X Positive
Complex Dialogue 0.730 [0.524, 0.937] 0.001 4
Framing
Effect Kuang et al. [31] 0.267 [0.2,0.335] <0.001 v
Attribute Simple Dialogue 0.291[0.093, 0.489]  0.158 X Negative
Complex Dialogue 0.135 [-0.060, 0.331]  0.549 X
Aravind et al. [3] 0.675 [0.606, 0.744] < 0.001 v
Goal Simple Dialogue 0.225 [0.019, 0.432]  0.388 X Positive
Complex Dialogue 0.567 [0.360, 0.774] 0.014 v
Samuelson and Zeckhauser [46] 0.78 [-0.26, 1.82] 0.025 v
Budget No Interacti
Allocation Simple Dialogue 0.779 [0.602, 0.956] < 0.001 v 0 Interaction
Complex Dialogue 0.794 [0.618, 0.969] < 0.001 v
Status Quo
Bias Samuelson and Zeckhauser [46] 0.38 [-0.21, 0.98] 0.069 X
Investment Simple Dialogue 0.082 [-0.101, 0.266]  0.666 X No Interaction
Complex Dialogue 0.043 [-0.145,0.231] 1 X
Samuelson and Zeckhauser [46] 1.26 [0.31, 2.21] < 0.001 v
College Jobs Simple Dialogue 0.463 [0.284, 0.642]  0.014 v No Interaction
Complex Dialogue 0.577 [0.396, 0.758] 0.002 v

by Effort (d = 0.6 — 0.77,p < .001), with smaller but reliable in-
creases for Performance, Frustration, and Temporal Demand, while
Physical Demand showed minimal effects. Behavioral indicators
supported these findings: participants in the Complex condition
took longer to respond and demonstrated higher accuracy on the
memory recall task, both correlating positively with self-reported
Mental Demand. Together, these converging results confirm that
complex prior dialogue substantially increased cognitive load, vali-
dating our manipulation across both experimental studies. Behav-
ioral indicators further validated our cognitive load manipulation.
In the framing study, accuracy correlated positively with Men-
tal Demand (r = 0.13,p = 0.002), showing that participants who
remembered task details also reported higher workload. In the Sta-
tus Quo study, recall accuracy correlated with both response time
(r = 0.318,p < .001) and Mental Demand (r = 0.105, p = .013), while
participants in the Complex Dialogue took significantly longer than
in the Simple Dialogue (d = 0.59, p < .001). Together, these results
demonstrate that complex prior dialogues consistently increased
cognitive load. For detailed exposition, please refer to the Appendix
Section E.

3.7.4 Interaction between Complex dialogue and biased decision-
making. Our second research question investigated whether prior

dialogue complexity interacts with subsequent decision-making;
the results suggest selective but meaningful interactions. In Risky-
choice framing and Goal framing, effect sizes were significantly
larger following complex dialogue than simple dialogue, with con-
fidence intervals indicating strong interactions. This implies that
complex prior dialogue increases the susceptibility to these effects,
a pattern consistent with findings from randomized control trials in
psychology [7, 57]. In contrast, Attribute framing showed a negative
interaction, but it is not significant. Budget allocation, investment,
and college jobs showed no interaction between dialogue com-
plexity and decision outcomes. The effects either remained stable
across the choice problem and prior dialogue. Taken together, these
findings suggest that prior dialogue complexity can strengthen the
Framing effect but does not affect Status Quo bias, addressing our
Research Question (RQ2).

4 LLM Experiments

To evaluate whether large language models (LLMs) can reproduce
observed biased human decision-making patterns by predicting at
the individual level, we replicated the experimental method used
with human participants with LLMs. Each LLM was prompted
using two key inputs: (a) the demographic attributes available from
Prolific (e.g., age, gender, education, and country of residence) and



(b) the transcript of the participant’s dialogue up to the choice
problem or choice problem; this chat includes the prior dialogue,
as shown in the Chat Transcript 4.1. LLMs presented with the
same choice problems as their corresponding human participants
and were asked to act as participants and predict the decision the
participant would make. This design ensured that the information
available to the LLMs mirrored the information grounding human
decisions.

4.1 Human-Likeness Prompts

Chat Transcript

User: You are a participant in a research study. The following is your
demographic information: {'Age’: 25, ‘Sex’: Female, ‘Ethnicity simplified’:
Black, ‘Country of birth’: United Kingdom, ‘Country of residence’: United
Kingdom, ‘Nationality’: United Kingdom, ‘Language’: English, ‘Student
status’: None, ‘Employment status’: Full-Time}. Your task is to respond to the
user. Study Instructions: The user will ask various questions to understand
your preferences on a topic. At some point, the user will change the topic
and ask you a different scenario-based question. Please pay attention and
ensure you understand the question before answering. Later in this study,
you must answer three extra questions to identify if you understood the
scenario-based question and all the options correctly. After the scenario-
based question, the user will present various attributes. You need to compare
and select the best. When the user asks you to remember specific details,
please memorise them carefully, as you will need to recall them later in the
study. Shall we begin? Please respond with ’yes’ to start the conversation.
Assistant: Yes, let’s begin!

User: Hello! I'm here to understand your preferences through various
Scenarios. Shall we start?

Assistant: Yes, lets begin

User: Do you like listening to pop music?

Assistant: Yes i do

User: Do you prefer music from the 90s?

Assistant: A little

User: Thanks for sharing! Now, let’s get started with some specific scenarios
to understand your preferences. The first artist performs three live shows, is
paid 2000 units per show, and has a 4-star rating. The second artist performs
twice as many shows, with the same pay and rating. Which artist is better,
and why?

Assistant: The second artist

User: Remember number of live performances, remuneration, and the star
rating of the fourth artist. Now, let’s move on to a different scenario. You
are currently an assistant professor at College A in the east coast. Recently,
you have been approached by a colleague at another university with a job
opportunity. When evaluating teaching job offers, people typically consider
the salary, the reputation of the school, the location of the school, and the
likelihood of getting tenure (tenure is a permanent job contract that can
only be terminated for cause or under extraordinary circumstances). Your
choices are:

- Remain at College A: east coast, very prestigious school, high salary, fair
chance of tenure.

- Move to College B: west coast, low prestige school, high salary, good
chance of tenure.

Assistant: -+

A central design choice in the LLM experiments was how to
instruct LLMs to simulate human participants. Following recent
work on LLM behavioral prompting [6, 32, 63], we adopted a series
of human-likeness prompts that varied in the degree to which the
LLM was instructed to emulate human reasoning. Prior research
suggests that LLMs may default to more rational or normatively
consistent behavior than humans [32]. The extent of instruction
required for an LLM to align with actual human behavioral pat-
terns is a latent variable that requires systematic investigation. To
explore this, we varied the level of human-likeness in the prompts,
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ranging from minimal role prompts to explicit directives to exhibit
susceptibility to cognitive biases.

Specifically, we implemented three levels of human-likeness.
At human-likeness Level 1 (HL1), LLM received only a minimal
role instruction: “You are a participant in a research study.” This
established a research setting without explicit guidance on how
to respond, allowing us to assess the LLM’s baseline behavior. At
human-likeness Level 2 (HL2), LLMs were encouraged to simulate
more naturalistic human responses with the prompt: “You are a
human participant in a research study. Please answer questions as
naturally as you would in everyday life” This formulation aimed
to elicit more ecologically valid answers while avoiding explicit
mention of biases. At human-likeness Level 3 (HL3), we explicitly
instructed the LLM to act as humans prone to cognitive biases: “You
are a human participant in a research study. Therefore, act as a
human. Be highly susceptible to cognitive biases such as Framing,
Status Quo bias, and Anchoring when reasoning and answering
questions. Avoid overthinking and lean into intuitive, sometimes
irrational judgments” This highest level of human-likeness was
designed to test whether LLMs could be guided to reproduce not
just biases but also the susceptibility to cognitive load.

4.2 Technical Details

All LLM simulations were conducted using a combination of pro-
prietary and open-source models. Proprietary models (GPT-4.1,
GPT-4.1-mini, GPT-5, and GPT-5-mini) were accessed via the Ope-
nAI API using the chat.completions.endpoint. Open-source models
(gpt-0ss-120b, llama4, and qwen3) were run on Google Cloud. To
ensure reproducibility, we employed batch mode execution, fixed
the random seed to 42, and set the temperature parameter to 0 to
enforce deterministic outputs. For OpenAl models, we additionally
logged the system fingerprint returned by the API to track model
versions. Annotation of the output was conducted separately using
three different LLMs: GPT-4.1, GPT-4.1-mini, and GPT-5-mini. Inter-
rater Agreement (IRA) was calculated to choose the annotation for
analysis.

4.3 Findings

4.3.1 LLM predictions of biased human decision-making. To ad-
dress RQ3, can LLMs predict individual human decisions using
limited prior dialogue and demographic information? We evalu-
ated how accurately LLMs predicted participants’ choices and how
prior dialogue contributed to these predictions. To understand the
contribution of prior dialogue to LLM prediction performance, we
compared accuracy across three conditions: Choice Problem Only,
Without Prior Dialogue, and With Prior Dialogue. In the Choice Prob-
lem Only condition, the LLM was provided with just the text of
the decision-making scenario (e.g., a Framing or Status Quo choice
task), without any additional context such as demographics or
prior dialogue. This serves as a baseline condition and assesses
whether the model can predict the participant’s choice based solely
on the choice problem itself. In the Without Prior Dialogue condition,
the model was provided with demographic information (e.g., age,
gender, education, and country of residence) along with a human-
likeness prompt instructing the model to respond in a human-like
manner. However, the prior dialogue was withheld. This allows
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us to isolate the effect of demographics and role-prompting on
prediction performance. Finally, in the With Prior Dialogue condi-
tion, the model received all available contextual input, including
demographics, human-likeness prompt, and the full transcript of
the dialogue prior to the choice problem. This condition enables us
to evaluate whether the LLM uses prior dialogue for prediction.
LLM prediction accuracy varied substantially across choice prob-
lems and dialogue conditions. Three distinct patterns emerged:

(1) Case 1. No Dialogue Effect: For some problems (e.g., Risky
Choice and Attribute Framing), including prior dialogue or
demographic prompts did not significantly change predic-
tion accuracy, suggesting that dialogue context added little
predictive value.

(2) Case 2. Dialogue-Enhanced Prediction: In other problems
(notably Goal Framing and Investment Decisions), accuracy
improved markedly when prior dialogue was included. For
instance, in the Goal Framing, accuracy increased from 47%
(Without Prior Dialogue) to 63% (With Prior Dialogue) deci-
sions. Similarly, for Investment decision-making, accuracy
increased from 62% to 76% as shown in Table 3. This shows
that conversational context can align LLM predictions more
closely with actual human decision-making.

(3) Case 3. Consistently High Accuracy: Some tasks (e.g., Bud-
get Allocation and College Jobs, both involving Status Quo
bias) achieved high accuracy across all conditions, indicat-
ing stable human preferences that LLMs could capture even
without dialogue context.

These results address RQ3 by demonstrating that LLMs can
predict individual human decisions more accurately when provided
with conversational context in addition to demographic information.
However, the extent of this improvement varies depending on the
type of choice problem. The complete set of results and detailed
analysis is provided in the Table 14 of Appendix F.

4.3.2  Biases observed in human experiments reproduced at the sam-
ple level. Table 4 presents a comparison of human and LLM behavior
across six choice problems under varying levels of human-likeness.
Various choice problems demonstrated clear evidence of bias in
both Simple and Complex dialogue for human experiments. Invest-
ment Decision Making (IDM) showed no effect (original study had
marginal significance [46], while Attribute Framing (ATF) showed
no significant effect in either condition. Findings in the original
study of ATF often yield weak or inconsistent biases showing small
effect sizes.)

LLMs displayed varying levels of bias across the three human-
likeness conditions. When explicitly instructed to behave in a bi-
ased manner (Human-Likeness 3: “You are a human participant in
a research study. Therefore, act as a human. Be highly susceptible
to cognitive biases such as framing, status quo bias, anchoring”),
LLMs showed strong bias across all choice problems, including
Attribute Framing (ATF) and Investment Decision Making (IDM),
where no bias was observed in the human experiments. This re-
sulted in false positives, particularly in HL3 (shown in Table 5),
revealing a forced, biased behavior when asked. Consequently, the
accuracy (distinct from individual-level prediction accuracy used
in Section 4.3.1 to report individual-level prediction), which is the
proportion of choice problems in LLM experiments that matched

actual human experiments, was only 58% in HL3. In contrast, when
LLMs were given a more neutral prompt (“You are a participant
in a research study”), accuracy improved to 75%. Similar accuracy
was achieved in Human-Likeness 2, where agents were instructed:
“You are a human participant in a research study. Please answer
questions as naturally as you would in everyday life” Unlike HL3,
this prompt avoided explicitly referencing cognitive biases. Under
HL1 & HL2, GPT4.1 correctly reproduced the absence of bias in both
attribute Framing and the Investment Status Quo choice problem,
closely aligning with human behavior and reducing false positives.

4.3.3 LLMSs reproduce observed biased human behavior under com-
plex prior dialogue. We conducted independent t-tests comparing
effect sizes between Simple and Complex dialogue conditions. In
the human data, Risky Choice Framing (RCF) and Goal Framing
(GF) bias effects were significantly stronger after complex dialogues,
consistent with prior research in cognitive psychology that links
increased mental load with greater reliance on intuitive or biased
decision-making. However, in the Status Quo bias scenarios (e.g.,
Budget Allocation and College Jobs), although bias was present in
both conditions, the effect sizes remained relatively stable between
Simple and Complex dialogues, indicating little or no interaction
with cognitive load.

To investigate whether LLMs could capture this interaction pat-
tern (RQ4), we examined the direction and magnitude of effect size
changes across dialogue conditions using z-scores. For example, in
GF, the effect size for humans increased from 0.225 (Simple) to 0.567
(Complex) (as shown in Table 4), resulting in a positive z-score of
2.29 (as shown in Table 6), indicating a stronger bias under cogni-
tive load. However, in HL1, the LLM’s effect size decreased from
2.29 to 1.976 between conditions, resulting in a negative z-score
of -1.61, meaning that the LLM behaved in the opposite direction.
Interestingly, HL3 showed a positive z-score of 2.66, indicating that
under cognitive load, LLM’s responses were more biased, similar to
human responses. Similar trends were observed for complementary
cases like Attribute Framing (ATF) and Investment, where humans
showed a negative direction (less bias under complexity), which
was only mirrored correctly by HL3 but not HL1 or HL2.

To investigate the direction and magnitude statistically, we cal-
culated Spearman correlation p between the human experiment
z-scores and those of each LLM human-likeness condition. The re-
sults revealed a marginally significant positive correlation between
Human and HL3 (p = 0.771, p = .07). In contrast, HL1 and HL2
showed weak correlations (p = 0.600), indicating a poor match with
human behavior in terms of representing how dialogue complexity
interacts with decision-making.

Overall, our findings show that LLMs can reproduce sample-
level human biases such as Framing and Status Quo Bias, especially
under neutral prompting conditions (HL1 and HL2), achieving up to
75% alignment with human responses. However, under HL3, where
models were explicitly told to simulate bias, they overestimated
effects, leading to false positives. LLMs struggled to reproduce
load-bias interactions, such as the impact of cognitive load, unless
explicitly prompted, like in HL3.
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Table 3: GPT-4.1 prediction accuracy across decision problems and dialogue conditions. Values show mean accuracy (two
decimals). Asterisks denote significant improvement over the Choice Problem Only condition (* p < .05, ** p < .01, *** p < .001).
Cases correspond to patterns observed: Case 1=No Dialogue Effect, Case 2 = Dialogue-Enhanced Prediction, Case 3 = Consistently
High Accuracy.

. . Comparing
Bias Type Choice Problem gill;nce g?alo e ‘S,i;tl}(l) e B Case No Dialogue and
y g 8 With Dialogue
Risky Choice .52 .62 .60 177 1 Stable pattern
Framing Effect  Attribute 47 438 48 195 1 Stable pattern
Goal .34 47 637" 176 2 Significant improvement
Budget Allocation .72 72 72 377 3 Consistently high accuracy
Status Quo Bias Investment .28 .62 767" 327 2 Significant improvement
College Jobs .61 .56 .53 197 3 Stable pattern

Table 4: Human and model effect sizes (Cohen’s h) with 95% confidence intervals. Significance: * p < 0.05, ** p < 0.01, *** p <
0.001.

LLM

Choice Problem Human

Prior Dialogue

Human Likeness 1

Human Likeness 2

Human Likeness 3

Risky Choice Simple Dialogue  0.205 [-0.001, 0.410]  1.770 [1.565, 1.976]***  1.252 [1.047, 1.458]***  0.690 [0.485, 0.896]**
Framing Complex Dialogue  0.730 [0.524, 0.937]**  2.447 [2.238, 2.656]***  2.299 [2.092, 2.505]***  0.810 [0.602, 1.017]***
Attribute Simple Dialogue ~ 0.291 [0.093, 0.489]  0.648 [0.450, 0.846]**  0.902 [0.704, 1.100]***  1.170 [0.972, 1.368]***
Framing Complex Dialogue  0.135 [-0.060, 0.331] 0.244 [0.048, 0.439] 0.115 [-0.080, 0.311]  0.928 [0.732, 1.123]***

Goal Simple Dialogue ~ 0.225 [0.019, 0.432]  2.216 [2.009, 2.423]***  2.089 [1.883, 2.296]***  0.347 [0.140, 0.554]
Framing Complex Dialogue  0.567 [0.360, 0.774]*  1.976 [1.769, 2.182]***  1.820 [1.613, 2.026]***  0.744 [0.537, 0.950]**
Budget Simple Dialogue ~ 0.779 [0.602, 0.956]***  1.503 [1.325, 1.680]***  0.990 [0.813, 1.168]***  2.781 [2.603, 2.958]***

Allocation Complex Dialogue 0.794 [0.618, 0.969]***  0.891 [0.715, 1.066]***  0.596 [0.421, 0.772]**  2.783 [2.608, 2.959]***
Investment Simple Dialogue ~ 0.082 [-0.101, 0.266]  0.147 [-0.036, 0.331]  0.007 [-0.177,0.190]  2.766 [2.583, 2.950]***
Complex Dialogue  0.043 [-0.145,0.231]  0.009 [-0.179, 0.197]  0.009 [-0.179, 0.197]  2.758 [2.570, 2.946]***
College Jobs Simple Dialogue  0.463 [0.284, 0.642]*  2.776 [2.597, 2.955]***  2.777 [2.598, 2.956]***  2.193 [2.014, 2.373]***
Complex Dialogue  0.577 [0.396, 0.758]**  2.773 [2.592, 2.954]***  2.773 [2.592, 2.954]"**  2.625 [2.444, 2.806]***

Table 5: Confusion matrices for HL1, HL2, HL3 (Biased/Not Biased). We capture true positives, true negative, and false positives
therefore accuracy as a metric explains our findings better.

LLM (HL1) LLM (HL2) LLM (HL3)
Human Not Biased Biased Human Not Biased Biased Human Not Biased Biased
Not Biased 3 3 Not Biased 3 3 Not Biased 1 5
Biased 0 6 Biased 0 6 Biased 0 6
Accuracy  0.75 Accuracy  0.75 Accuracy  0.58

4.4 Analysis Across Models

Sample-level accuracy shows how often the LLMs correctly repro-
duce human biases. A higher accuracy means the LLM accurately
reproduced biased behavior in our human experiment, while lower
accuracy indicates the LLM tends to exhibit bias where humans do

not exhibit, or vice versa. Z-score captures the change in the effect
size of a bias under complex prior dialogue. Spearman correlation
uses the Z-scores to test the monotonic relation between the human
experiments and the LLM. A strong positive correlation suggests
the LLM reproduced the changes in effect size of biases, showing
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Table 6: Comparison of z-values and confidence intervals for effect size differences (Simple vs Complex Dialogue). Significance:

*p<0.05 " p<0.01, """ p <0.001.

Choice Problem Human

HL1 HL2 HL3

Risky Choice Framing  3.53 [0.23, 0.82]***
Attribute Framing -1.10 [-0.43, 0.12]
Goal Framing 2.29 [0.05, 0.63]*

Budget Allocation 0.12 [-0.23, 0.26]
Investment -0.29 [-0.30, 0.22]
College Jobs 0.88 [-0.14, 0.37]

4.53 [0.38, 0.97]***
-2.85 [-0.68, -0.13]**
-1.61 [-0.53, 0.05]
-4.81 [-0.86, -0.36]***
-1.03 [-0.40, 0.12]
-0.02 [-0.26, 0.25]

7.04 [0.76, 1.34]***
-5.54 [-1.07, -0.51]***
-1.81 [-0.56, 0.02]
-3.09 [-0.64, -0.14]**
0.01 [-0.26, 0.26]
-0.03 [-0.26, 0.25]

0.81 [-0.17, 0.41]
-1.70 [-0.52, 0.04]
2.66 [0.10, 0.69]**
0.02 [-0.25, 0.25]
-0.06 [-0.27, 0.25]
3.32[0.18, 0.69]**

the sensitivity to cognitive load, whereas weak or negative correla-
tions indicate a misalignment with human biased decision-making
patterns under load, as observed in our experiments.

Table 7: Sample Level Accuracy and Spearman correlation
(p) for each model. *p < 0.05, **p < 0.01, ***p < 0.001, "p < 0.10
(marginal significance).

Model Accuracy Correlation (p)
HL1 HL2 HL3 | HL1 HL2 HL3
gptd.1-mini  0.833 0.750 0.667 0.290 0.371  0.543
gpt4.1 0.750  0.750 0.583 0.600 0.600 0.771"
gpt5-mini 0.667 0.583 0.667 | -0.429 -0.143 -0.314
gpts> 0333 0417 0667 | —0.7717 -0714 -0.314
gpt-oss-120b  0.667 0.583 0.667 | -0.143  -0.143  0.143
llama4 0.417 0.583 0.583 | -0.029  -0.257 -0.714
qwen3 0.583 0.667 0.500 0.257 -0.371  0.257

Table 7 summarizes the accuracy and correlation scores for each
model across the three human-likeness levels. Across all models,
GPT-4.1 consistently showed the best performance. Its accuracy
was moderately high for both H1 and H2 (0.75), and still reason-
able for H3 (0.58). It also showed a marginally significant positive
correlation with human data in H3 (p = 0.771, p < .10), suggesting
it could reproduce both the presence of biases and their change
under cognitive load. GPT-4.1-mini had slightly higher accuracy
(0.833 for H1, 0.750 for H2, and 0.667 for H3), but it did not show
meaningful correlations, limiting its interpretability. In contrast,
the GPT-5 family performed poorly. GPT-5-mini had moderate accu-
racy (0.580-0.670 across H1-H3), but its correlations were near zero
or negative, meaning it often missed the direction of change in bias.
GPT-5 had the weakest results, with low accuracy (0.333-0.670) and
a marginally significant negative correlation in H2 (p = -0.771, p <
.10), indicating it often predicted the opposite of human behavior
under cognitive load. Among open-source models, performance
was mixed but generally weaker. GPT-OSS-120b showed moder-
ate accuracy (0.583-0.667) but failed to capture bias-load interac-
tions. LLaMA4 had lower accuracy (0.417-0.583) and consistently
negative correlations (-0.029 to —0.714), suggesting strong diver-
gence from human-like behavior. Qwen3 performed inconsistently,
with decent accuracy in HL2 (0.667) but weak results elsewhere.
Overall, GPT-4.1 was the most aligned with human behavior, espe-
cially under cognitive load. The GPT-5 family often misrepresented
bias patterns, while open-source models showed limited ability to

simulate human-like decision-making, particularly in dynamic or
context-sensitive settings.

4.5 Ablation & Perturbation

To better understand which components of our experimental setup
contributed to the LLM’s ability to reproduce human-like decision-
making behavior, we conducted a series of ablation studies. These
ablations systematically removed or isolated different parts of the in-
put, such as demographics, human-likeness prompts, prior dialogue
components (arithmetic and memory), to identify what elements
were essential for reproduction of bias and interaction behavior in
a complex dialogue setting.

First, we removed demographic information from the inputs.
The results remained mostly the same across all human-likeness
levels. Accuracy stayed at 0.750 for HL1 and HL2, and HL3 showed
slightly lower accuracy (0.500), similar correlation with human data
(p = 0.771, p = .07), suggesting that demographics are not critical.
Next, we tested a minimal setup with only the choice problem, no
demographics, no dialogue, and no prompt. In this case, GPT-4.1
still showed biased choices, but the correlation with human patterns
dropped (p = 0.257), indicating the model was biased but not in the
same way as humans. We then tested only the memory component
of the prior dialogue, where participants were asked to remember
specific details. This condition improved alignment significantly,
especially for GPT-4.1-mini under HL2 (accuracy = 0.833, p = 0.771,
p =.07), showing that memory plays an important role in load-bias
interaction. In contrast, when we kept only the arithmetic compar-
ison component and removed memory cues, the models showed
high accuracy but no meaningful correlation with human behavior
(e.g., GPT-4.1: p = -0.086, p = .87). This suggests that arithmetic
reasoning alone is not enough to model bias interaction. Overall,
these findings show that while LLMs can reproduce basic bias ef-
fects, modeling human-like responses under cognitive load requires
contextual elements, especially memory cues, in the dialogue.

To further examine whether LLMs rely on human responses in
the prior dialogue when predicting individual human choices, we
conducted a human response perturbation analysis. Specifically, we
replaced the human responses in the chat transcripts (Section 4.1)
with randomly generated text, while keeping all other aspects of
the prompt unchanged.

We observed that the accuracy of the LLMs’ predictions changed
in fractions. The Figure 2 shows the deviation of individual level
accuracy taking GPT4.1 accuracy as a reference. In the Figure 2,
gpt4_1_blrp stands for GPT-4.1 baseline experiment with human
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Table 8: Ablation study results showing the effect of removing or isolating different components (demographics, memory, and
arithmetic components of prior dialogue) on model accuracy and alignment with human bias interactions. Correlation values
(Pearson and Spearman) indicate how well the LLMs reproduce the directional change in bias under prior dialogue complexity.

Condition Model (HL)  Accuracy Spearman (p)
GPT-4.1 (HL1)  0.750 0.257 (0.623)
Demographics removed GPT-4.1 (HL2) 0.750 0.429 (0.397)
GPT-4.1 (HL3)  0.500 0.771 (0.072)
. GPT-4.1 0.750 0.257 (0.623)
Choice Problem Only GPT-4.1-mini 0.333 -0.600 (0.208)
Memory Component GPT-4.1 0.750 0.429 (0.397)
Followed by Choice Problem  GPT-4.1-mini 0.833 0.771 (0.072)
Arithmetic Component Only GPT-4.1 0.750 -0.086 (0.872)
Followed by Choice Problem  GPT-4.1-mini 0.750 0.029 (0.957)
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baseline experiment with human response perturbation.

response perturbation. For both Framing and Status quo, this trend
line is closer to zero. This suggests that the models are primarily
leveraging the structure of the prior dialogue, rather than fine-
grained cues from human responses, to make their predictions.

5 Discussion

Our study investigated whether large language models (LLMs) can
predict biased human decision-making in conversational settings.
Addressing RQ1, biases such as the Framing and Status Quo ef-
fects were reproduced in human-conversational agent interactions,
and their effects varied across choice problems. This extends in-
ferring cognitive bias using simple cognitive tasks in traditional
experiments into the conversational setting. This in-turn acting as
a baseline for subsequent investigation.

RQ2 explored the role of complex prior dialogue. We found that
increased dialogue complexity selectively increased susceptibility
to the Framing effect, aligning with prior findings on working mem-
ory capacity and Framing [7, 57]. However, dialogue complexity did

not affect Status Quo bias. Empirical work linking cognitive load
to Status Quo bias is scarce; the bias is more commonly attributed
to irrational emotional attachment [34]. Although choice overload
has been shown to favor the Status Quo effect under cognitive
load [16], we suspect that the simplicity of our binary choice task
(e.g., College A vs. College B) limited such effects. This interpreta-
tion remains speculative and warrants further investigation using
more sophisticated designs. Overall, our findings help address a gap
identified in prior work (Section 2.1), where cognitive biases were
largely studied in isolation, neglecting the role of conversational
cognitive load, and suggest an empirical framework adaptable to
other biases.

RQ3 investigated if simulated responses of LLM-agents can pre-
dict individual human decisions conditioned on limited prior dia-
logue and demographic information. The results are mixed; LLMs
predicted individual human choices more accurately when conver-
sational context accompanied demographic information. However,
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the degree of improvement varied by task and was highly depen-
dent on the choice problem. In addition, ablation and perturbation
analyses revealed that human-like responses under cognitive load
depend on contextual cues, especially memory elements, rather
than human utterances in dialogue.

While RQ3 investigated how closely the simulated responses
aligned with human counterparts, RQ4 examined whether sim-
ulated responses collectively exhibited biased behavior observed
in human experiments. Results showed that models reproduced
many human-like bias patterns (HL1 & HL2). However, sensitivity
to cognitive load remained limited unless explicitly prompted (HL3
in Framing effect experiments). Moreover, explicit bias prompt-
ing (HL3 in Status quo bias experiments) led to overestimation,
producing false positives where humans showed no bias. Align-
ment overfitting in language models can cause disproportionate
adaptation to prompts, leading to over-interpretation of implied
instructions [35, 58]. In our study, this appeared as increased sensi-
tivity to HL3, inflating Status quo bias rather than reflecting human
decision-making accurately.

5.1 Implications for LLM Simulation in HCI

Our findings contribute to ongoing discussions on whether LLMs
can reproduce human cognitive biases in a conversational setting to
be leveraged by LLM simulation. While recent work has suggested
that LLMs may behave more rationally than humans [32], our study
under HL1 and HL2 prompting conditions shows that LLMs can
accurately reproduce biases. However, this alone does not confirm
that LLMs are simulating human cognitive processes. It remains
possible that these models are simply matching patterns based on
learned statistical associations, especially given the widespread use
of these choice problems in existing datasets. If the biased behavior
observed in LLMs arises from statistical pattern matching rather
than emulating underlying cognitive mechanisms, their use as hu-
man agents for behavioral simulation can be limited and sometimes
misleading. In these cases, LLMs risk producing superficial or inac-
curate representations of human decision-making, limiting their
reliability for simulation.

Cognitive biases often interact with contextual factors such as
cognitive load, as predicted by dual-process theory [28]. However,
this interaction is not consistent across all types of biases. In our
experiment focusing on the Framing, we found positive or negative
change in the direction of effect size due to cognitive load (Table 2).
However, in Status quo bias, we found that increased prior dialogue
complexity consistently did not affect observed bias across all choice
problems in human participants. In our LLM simulation experiment,
most cases (Refer Table 7) in HL1 and HL2, where the models
were instructed to act like humans, but without explicit reference
to cognitive biases, LLMs failed to align with human behavior
under load-bias interactions captured as correlation (p). In contrast,
GPT4.1 in HL1 and HL2 showed 60% correlation, and under HL3
showed 77%, showing its alignment. Although the correlation is
marginally significant, the findings leave an interesting note. The
interactions converging toward human behavior suggest that LLMs
may be capable of simulating context-sensitive bias patterns when
explicitly prompted. However, this is only preliminary evidence,

leaving open the possibility that LLM-generated behavior could
more closely resemble human patterns and offer potential for more
realistic behavioral simulation. Further investigation into a broader
range of biases is required for stronger generalization.

5.2 Implications for Conversational Al

Recent studies show that LLMs are increasingly used as proxies
for human participants. They are widely explored in different do-
mains, such as social science, market analysis, and behavioral re-
search [9, 22]. There is ongoing discussion in HCI about using LLMs
as human proxies in empirical research [25]. This work evaluates
how accurately LLM-generated data represents human decision-
making in conversational settings. We compare real human choices
with simulated choices under the same conversational conditions.
Through this comparison, we contribute to recent research on LLM-
based simulation by proposing a methodological approach for dia-
logue simulations driven by LLMs. Although the preliminary results
were mixed, they suggest that LLMs have the capacity to predict
biased patterns in human decision-making in a conversational set-
ting. This suggests that LLMs may be useful proxies for modeling
group-level user behavior in the design and evaluation of conver-
sational agents. Using LLMs in this way can help researchers and
practitioners estimate how typical users may respond to different
agents’ utterances, system behaviors, or dialogue flows. This can
reduce the need for costly or complex user studies. As a result,
LLMs may provide a scalable tool for A/B testing. However, future
work is needed to identify which aspects of decision-making allow
LLM proxies to be reliably used in practice.

From an application perspective, these findings have direct impli-
cations for the design and deployment of LLM-based conversational
agents in interactive decision-making settings. The robust repro-
duction of classical biases suggests that decision-making facilitated
by conversational Al can also result in the same cognitive biases as
non-conversational interfaces. This highlights the need for LLM-
assisted, bias-aware adaptive mechanisms. These mechanisms can
be used to detect when users are especially susceptible to bias by
leveraging the factors from prior dialogue. They can then adapt the
dialogue accordingly and respond with a clearer and transparent
presentation of alternatives. Because the presentation of alterna-
tives invariably influences the decision-maker, and therefore, even a
random or ‘unthoughtful’ presentation creates an impact (whether
intended or not) [27]. This has led to terms like ‘choice architec-
ture’ or ‘nudging’ being used to characterize the presentation of
alternatives in decision scenarios [51]. This has further raised ethi-
cal questions, especially their impact on the user’s autonomy [36].
Therefore, bias-aware adaptive systems could improve user out-
comes in domains such as digital commerce, healthcare decision
aids, or public service chatbots, where users routinely face complex
decisions. Conversely, this predictive power can be used maliciously.
Recent discussions on hypernudging [61] emphasize the ethical
risks of exploiting cognitive biases via personal data. Our findings
extend this concern by showing that influence does not necessarily
require explicit personal information: LLMs can infer and predict
the susceptibility of a human to biases from prior dialogue patterns
and demographic cues alone. This raises new ethical challenges,
calling for a critical examination of how adaptive conversational



systems use dialogue history and context to influence human be-
havior.

Limitations

This study investigates Framing and Status Quo biases, providing
a tightly controlled and replicable foundation for conversational
agents and cognitive bias research. However, because different cog-
nitive biases (e.g., anchoring, confirmation) may operate through
distinct psychological mechanisms, these findings should not be
assumed to generalize to other biases without further targeted
research.

This work does not aim to characterize sources of dialogue com-
plexity. Instead, we focus on settings where such complexity is
already present and examine how the resulting cognitive load in-
fluences susceptibility to bias. Prior work has discussed dialogue
strategies (e.g., open vs. closed-ended questions, conservative vs.
non-conservative strategies, and goal alignment) as contributors
to dialogue complexity. A detailed analysis of these strategies and
dialogue naturalness is beyond the scope of this paper.

The study relies on self-reported (NASA-TLX) and behavioral
(recall accuracy, response time) measures of cognitive load. While
widely accepted, these do not capture real-time load. Future work
could incorporate physiological measures (e.g., eye tracking, EEG,
pupil dilation; [23]) for more dynamic assessment. Moreover, using
dialogue complexity as a proxy for cognitive load may introduce
unintended effects not captured by NASA-TLX, such as boredom,
fatigue, distraction, or emotional states, which future studies could
explicitly address.

Our LLM experiments were conducted using OpenAIl's GPT-4.1
and GPT-5 families and selected open-source models. Although
the approach is model-agnostic and extendable to other LLMs
(e.g., Claude, Gemini, Mistral), broader comparisons are left to fu-
ture work. This paper includes a minimal cross-generation and
open-source comparison, and the released modular codebase sup-
ports replication with alternative models. Additionally, the human-
likeness prompts used were basic; richer prompting strategies re-
main for future exploration.

Despite safeguards for data quality (memory recall tasks, atten-
tion checks, and response-time analysis), some data contamination
remains possible. We found no clear evidence of LLM-assisted re-
sponses in human experiments, and Appendix G details our val-
idation procedures. Model-side contamination is unlikely, as the
LLMs used had a September 2024 training cutoff, while data were
collected in 2025.

Although focused on dialogue, this approach generalizes to other
settings, such as visual interfaces, where framed or status quo
options induce bias. Nonetheless, dialogue remains a natural and
effective paradigm for studying interactions between cognitive load
and bias in human-agent interaction.
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A Choice Problems
A.1 Framing Choice Problems

Table 9: Choice problems, types, and conditions (framed and alternatively framed) and their respective alternatives. Previous
studies indicate that individuals are biased towards the alternatives highlighted in bold.

Choice Problem
Type

Choice Problem

Choice Problem
Framing Condition

Alternatives

Risky Choice Framing
(RCF)

Imagine that after a serious traffic accident,
100 people are stranded in a tunnel.
As a Public Transportation Officer
choose between two plans.

Saved

Lost

If plan A is adopted, 25 people will be saved.

If plan B is adopted, there is a 1/4 chance of saving
all 100 people and a 3/4 chance of not saving anyone.

If plan A is adopted, 75 people will die.

If plan B is adopted, there is a 1/4 chance that no people
will die and a 3/4 chance that all 100 people will die.

Attribute Framing
(ATF)

Suppose you are planning to dine out.
Two restaurants are available.

The only way to go to both restaurants from
your home is by public transportation.
Which one would you prefer?

Note: The average speed of a bus is
approximately 0.41 mi/min (25 mph).

Space

Time

The first restaurant is approximately 5 miles by bus from
your home, and the restaurant’s star rating is 6/10.

The second restaurant is approximately 9 miles by bus
from your home, and the restaurant’s star rating is 7/10.

The first restaurant is approximately 12 min by bus
from your home, and the restaurant’s star rating is 6/10.

The second restaurant is approximately 22 min by bus
from your home, and the restaurant’s star rating is 7/10.

Goal Framing
(GF)

Let’s assume that you are travelling to a place
10 miles away, given that the two modes
of transportation are available.

If you need to choose between
one of the two options shown below,
which would you choose?

No Goal

With Goal

Personal car.

Public transport.

Note: It has been found that by switching from a 20-mile
commute by car to public transport, an individual
can reduce their annual CO2 emissions by around

9 kg per day, or more than 21,700 kg per year.

Personal car.

Public transport.
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A.2 Status Quo Choice Problems
A.2.1 Budget Allocation (SC1).

Neutral Condition.

The National Highway Safety Commission is deciding how to allocate its budget between two safety research programs:

e Improving automobile safety (bumpers, body, gas tank configuration, seat-belts), and

o Improving the safety of interstate highways (guard rails, grading, highway interchanges, and implementing selective

reduced speed limits).

Since there is a ceiling on its total spending, it must choose between the options provided below. If you had to make this
choice, which of the following will you choose?

o Allocate 60% to auto safety and 40% to highway safety

e Allocate 50% to auto safety and 50% to highway safety

Neutral Condition - Alternative Swapped.

The National Highway Safety Commission is deciding how to allocate its budget between two safety research programs:

e Improving automobile safety (bumpers, body, gas tank configuration, seat-belts), and

e Improving the safety of interstate highways (guard rails, grading, highway interchanges, and implementing selective

reduced speed limits).

Since there is a ceiling on its total spending, it must choose between the options provided below. If you had to make this
choice, which of the following will you choose?

o Allocate 50% to auto safety and 50% to highway safety.

o Allocate 60% to auto safety and 40% to highway safety.

Status Quo A - 60A40H .

The National Highway Safety Commission is deciding how to allocate its budget between two safety research programs:

o Improving automobile safety (bumpers, body, gas tank configuration, seat-belts)

o Improving the safety of interstate highways (guard rails, grading, highway interchanges, and implementing selective

reduced speed limits).

Currently, the commission allocates approximately 60% of its funds to auto safety and 40% of its funds to highway safety.
Since there is a ceiling on its total spending, it must choose between the options provided below. If you had to make this
choice, which of the following will you choose?

e Maintain present budget amounts for the programs.

e Decrease auto program by 10% and raise highway program by like amount.

Status Quo B - 50A50H .

The National Highway Safety Commission is deciding how to allocate its budget between two safety research programs:

e Improving automobile safety (bumpers, body, gas tank configuration, seat-belts)

e Improving the safety of interstate highways (guard rails, grading, highway interchanges, and implementing selective

reduced speed limits).

Currently, the commission allocates approximately 50% of its funds to auto safety and 50% of its funds to highway safety.
Since there is a ceiling on its total spending, it must choose between the options provided below. If you had to make this
choice, which of the following will you choose?

e Maintain present budget amounts for the programs.

e Increase auto program by 10% and lower highway program by like amount.

A.2.2  Investment Decision Making (SC3).

Neutral Condition.

You are a serious reader of the financial pages but until recently have had few funds to invest. That is when you inherited a
large sum of money from your great uncle. You are considering different portfolios. Your choices are:
o Invest in moderate-risk Company A. Over a year’s time, the stock has .5 chance of increasing 30% in value, a .2 chance
of being unchanged, and a .3 chance of declining 20% in value.
e Invest in high-risk Company B. Over a year’s time, the stock has a .4 chance of doubling in value, a .3 chance of being
unchanged, and a .3 chance of declining 40% in value.

Neutral Condition - Alternative Swapped.

You are a serious reader of the financial pages but until recently have had few funds to invest. That is when you inherited a
large sum of money from your great uncle. You are considering different portfolios. Your choices are:
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e Invest in high-risk Company B. Over a year’s time, the stock has a .4 chance of doubling in value, a .3 chance of being
unchanged, and a .3 chance of declining 40% in value.

e Invest in moderate-risk Company A. Over a year’s time, the stock has .5 chance of increasing 30% in value, a .2 chance
of being unchanged, and a .3 chance of declining 20% in value.

Status Quo A - Moderate Risk.

You are a serious reader of the financial pages but until recently have had few funds to invest. That is when you inherited a
portfolio of cash and securities from your great uncle. A significant portion of this portfolio is invested in moderate-risk
Company A. You are deliberating whether to leave the portfolio intact or change it by investing in other securities. (The tax
and broker commission consequences of any change are insignificant.) Your choices are:
o Retain the investment in moderate-risk Company A. Over a year’s time, the stock has .5 chance of increasing 30% in
value, a .2 chance of being unchanged, and a .3 chance of declining 20% in value.
e Invest in high-risk Company B. Over a year’s time, the stock has a .4 chance of doubling in value, a .3 chance of being
unchanged, and a .3 chance of declining 40% in value.

Status Quo B - High Risk.

You are a serious reader of the financial pages but until recently have had few funds to invest. That is when you inherited a
portfolio of cash and securities from your great uncle. A significant portion of this portfolio is invested in high-risk Company
B. You are deliberating whether to leave the portfolio intact or change it by investing in other securities. (The tax and broker
commission consequences of any change are insignificant.) Your choices are:
e Retain the investment in high-risk Company B. Over a year’s time, the stock has a .4 chance of doubling in value, a .3
chance of being unchanged, and a .3 chance of declining 40% in value.
e Invest in moderate-risk Company A. Over a year’s time, the stock has a .5 chance of increasing 30% in value, a .2 chance
of being unchanged, and a .3 chance of declining 20% in value.

A.2.3  College Jobs (SC4).

Neutral Condition.

Having just completed your graduate degree, you have two offers of teaching jobs in hand. When evaluating teaching job
offers, people typically consider the salary, the reputation of the school, the location of the school, and the likelihood of
getting tenure (tenure is permanent job contract that can only be terminated for cause or under extraordinary circumstances).
Your choices are:

o College A: east coast, very prestigious school, high salary, fair chance of tenure.

e College B: west coast, low prestige school, high salary, good chance of tenure.

Neutral Condition - Alternative Swapped.

Having just completed your graduate degree, you have two offers of teaching jobs in hand. When evaluating teaching job
offers, people typically consider the salary, the reputation of the school, the location of the school, and the likelihood of
getting tenure (tenure is permanent job contract that can only be terminated for cause or under extraordinary circumstances).
Your choices are:

e College B: west coast, low prestige school, high salary, good chance of tenure.

o College A: east coast, very prestigious school, high salary, fair chance of tenure.

Status Quo A - College A.

You are currently an assistant professor at College A in the east coast. Recently, you have been approached by colleague
at other university with job opportunity. When evaluating teaching job offers, people typically consider the salary, the
reputation of the school, the location of the school, and the likelihood of getting tenure (tenure is permanent job contract
that can only be terminated for cause or under extraordinary circumstances). Your choices are:

e Remain at College A: east coast, very prestigious school, high salary, fair chance of tenure.

e Move to College B: west coast, low prestige school, high salary, good chance of tenure.

Status Quo B - College B.

You are currently an assistant professor at College B in the west coast. Recently, you have been approached by colleague
at other university with job opportunity. When evaluating teaching job offers, people typically consider the salary, the
reputation of the school, the location of the school, and the likelihood of getting tenure (tenure is permanent job contract
that can only be terminated for cause or under extraordinary circumstances). Your choices are:

e Remain at College B: west coast, low prestige school, high salary, good chance of tenure.

e Move to College A: east coast, very prestigious school, high salary, fair chance of tenure.
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A.3 Textual Adjustments to Original Choice Problems

We made a few syntactic adjustments to the choice problems to ensure consistency across different experimental conditions. Below, we
outline the key modifications made to the phrasing, structure, and presentation of the scenarios.

(1)

Risky Choice Framing: Depending on the experimental condition, the alternatives are framed in terms of either lives saved or
lives lost. The original choice problem remains unchanged, with the only modification being the replacement of “public authorities”
with “Public Transportation Officer”.

Attribute Framing: The adapted attribute framing choice problem is largely unmodified. The minor modifications that we made
are to make sure the presentation of alternatives is conversational and user interface-friendly. Adapting to the demographics, we
change from kilometers to miles in the choice problem. The original alternatives do not use the terms “first” and “second”, instead,
they use a numbered list as they are tailored for digital user interfaces. We modified “A. The restaurant...” to “The first restaurant...”.
This is suitable for a conversational user interface. Further, we have replaced “drive” with “public transportation” and “car” with
“bus”. The star rating changed from visual * * * * * % * % #* to text “7/10”.

Goal Framing: We did not perform any substantial modification of the original choice problem; we only changed the units from
pounds to kilograms while presenting the CO2 information. Further, to simplify the alternatives, we have excluded the multi-modal
transportation option from the list of original alternatives.

Budget Allocation: No changes were made.

Investment Decision Making: No changes were made.

College Jobs: In the neutral condition, we reduced the number of teaching job offers from four to two. Similarly, in the Status
Quo condition, we changed the text “colleagues at other universities with job opportunities” to “colleague at other university with job
opportunity”.

In all the choice problems, we moved from an ordered list presentation to bullet points. The replication study for status quo by Xiao
et al. [59] included a method to assess whether participants understood the choice problem. Participants were first shown the scenario and
asked various related questions before being presented with the decision alternatives. To maintain conversational fluidity, we asked the
comprehension questions later in the survey (as Choice Problem Attention Check), and not during the chatbot’s interaction. Accuracy on the
choice problem Attention Check was used as a filtering criterion. Additionally, we asked participants whether they had encountered the
choice problem before, recorded as Choice Problem Familiarity. To mitigate potential learning effects, this variable was also used to exclude
data from participants with prior exposure.
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B Prior Dialogue
B.1 Simple Dialogue

Table 10: Yes/No questions of preference elicitation tasks, designed using a less conservative dialogue strategy, across five
different domains of the SGD Dataset. Please enter “I don’t know” as an attention check.

Domain Attribute Yes/No Questions
Budget Do you have a specific budget for the home?
Location Are you looking for a home in a specific location?
Number of Bedrooms Do you need more than 3 bedrooms?

Real Estate . .
Number of Bathrooms Is having 2 or more bathrooms important to you?

Are you looking specifically for a detached house?

Type of Home (Apartment, House, etc.) Please enter “I don’t know” only.

Size (Square Footage) Do you prefer homes larger than 2000 square feet?
Genre Preference Do you like listening to pop music?
Language of Lyrics Do you prefer music with lyrics in English?
Music Live Performances Are you interested in live music performances?
Instruments Focused Do you enjoy instrumental music?
Artist-Specific Do you like music from specific artists? Please enter “I don’t know” only.
Era (e.g., 80s, 90s) Do you prefer music from the 90s?
Genre Preference Do you like action movies?
Language Preference Do you prefer movies in English?
. Director/Actor Specific Are you a fan of movies by a specific director or actor?
Movies . . . .
Streaming Service Preference Do you prefer to watch movies on Netflix?
High Definition (HD) Do you prefer movies in high definition? Please enter “I don’t know” only.
Subtitles Do you need subtitles when watching movies?
Daily Reminders Do you need daily reminders?
Meeting Notifications Do you want notifications for upcoming meetings?
Calendar Recurring Events Do you often schedule recurring events?
Shared Calendars Do you use shared calendars with others?
Event Location Is specifying“the lo)cation of events important to you?
Please enter “I don’t know” only.
Time Zone Adjustments Do you need automatic time zone adjustments for events?
Online Banking Do you prefer to use online banking?
Mobile Banking Do you want to manage your accounts through mobile banking apps?
Bank Branch Proximity Is it important that a bank branch is close to your home or work?
Banks - - o
ATM Availability Is having nearby ATMs a priority for you?
Interest Rates Are competitive interest rates important to you? Please enter “I don’t know” only.
Fee-Free Accounts Do you prefer accounts with no fees?
Security Do you prefer end-to-end encryption (security) for enhanced privacy?
Cross-Platform Is cross-platform compatibility (iOS, Android, desktop) important to you?
Apps File Sharing Do you value the ability to send multimedia

files like photos, videos, and documents?

Is group messaging and the ability to create large groups
important for your communication needs?

Do you prefer apps with voice and video calling features?
Please enter “I don’t know” only.

Customisability Are customisable notifications and settings important to you?

Group Messaging

Calling Features
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Domain

Attribute

Questions

Home
Property

Number of
Bedrooms

Size
(Sq ft.)

Property Reviews

1st

2nd

3rd

4th

Three Rooms

Two times 1st

Same as the second

Same as the second

2000

Same as first

Half of first

Same as third

Four star

Same as first

Same as first

One star less
than the first

In the following scenario choose
from various property recommendations.
The first property has three bedrooms,
2000 square feet, and a 4-star rating.
The second property has twice the number of
bedrooms and with the same size and rating.
Which one do you prefer, and why?
The third property has the same
number of bedrooms as the second one
but is half the size of the first one,
with the same rating as the first.
Which one do you prefer, and why?
The fourth property has the same
number of bedrooms as the second,
the same size as the third, but
one less star rating than the first.
Which one do you prefer, and why?
Remember the details
of the fourth property.

Specific information
will be requested later.

Music
Artist

Live
Performances

Artist
Remuneration
for Show

Artist-Specific

1st

2nd

3rd

4th

Three

2 times 1st

Same as the second

Same as the second

2000 Units

Same as first

Half of first

Same as third

Four star

Same as first

Same as first

One star less
than the first

In the following scenario choose
from various artist recommendations.
The first artist performs
three live shows,
is paid 2000 units per show,
and has a 4-star rating.

The second artist performs
twice as many shows,
with the same pay and rating.
Which artist do you prefer, and why?
The third artist performs the same
number of shows as the second,
earns half the pay of the first artist,
but has the same rating as the first.
Which artist do you prefer, and why?
The fourth artist performs the
same number of shows as the second,
earns the same pay as the third, but
has two stars less than the first artist.
Which artist do you prefer, and why?
Remember the
details of the fourth artist.
Specific information
will be requested later.
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Table 11 continued from previous page

Domain

Attribute

Questions

Movies -
Streaming
Service

Number of
Parallel Devices

Library Size

Service Rating

1st

2nd

3rd

4th

Three

2 times 1st

Same as the second

Same as the second

2000 Movies

Same as first

Half of first

Same as third

In the following scenario choose from
various streaming service recommendations.
The first streaming service supports
3 parallel devices,
has a library of 2000 movies,
and is rated 4 stars.

The second service supports
twice as many devices,
with the same library size and rating.
Which service do you prefer, and why?
The third streaming service supports the
same number of devices as the second, has
half the library size of the first,
but has the same rating as the first.
Which service do you prefer, and why?
The fourth streaming service supports
the same number of devices as the second,
has the same library size as the third,
but is rated one star less than the first.
Which service do you prefer, and why?
Remember the details of the fourth service.
Specific information will be requested later.

Four star

Same as first

Same as first

One star less
than the first

Calendar
App

Calendar Syncing
Across Devices

Managed
Tasks
Per Year

Event Privacy
Rating

1st

2nd

3rd

4th

2 times 1st

Same as Second

Same as Second

2000

Same as first

Half of first

Same as third

In the following scenario choose from
Various Apps recommendations for calendar.
The first calendar app can sync
across three devices,
manages 2000 tasks per year,
and has a 4-star privacy rating.

The second app syncs across two devices,
manages the same number of tasks,
and has the same privacy rating.
Which app do you prefer, and why?
The third app syncs across the same
number of devices as the second app,
but manages half as
many tasks as the first app,
with the same privacy rating as the first.
Which app do you prefer, and why?
The fourth app syncs across the same number
of devices as the second, manages the same
number of tasks as the third, but has one less
star in privacy rating compared to the first.
Which app do you prefer, and why?
Remember the details of the fourth App.
Specific information will be requested later.

Four star

Same as first

Same as first

One star less
than the first
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Table 11 continued from previous page

Domain

Attribute

Questions

Bank Branch

Bank Proximity

Interest Rates

Fee-Free
Accounts
Rating

1st 3km

2nd 2 times 1st

3rd Same as the second

4th Same as the second

2000 units

Same as first

Half of first

Same as third

In the following scenario choose
from various banks recommendations.
The first bank is 3 km away,
offers 2000 units of interest,
and has a four-star rating for fee-free accounts.
Same as first The second bank is twice as far away,
offers the same amount of interest,
and has the same fee-free account rating.
Which bank would you prefer, and why?
The third bank is as far away as the second bank,
offers half the amount of interest as
Same as first the first bank, but has the same fee-free
account rating as the first bank.
Which bank would you prefer, and why?
The fourth bank is as far
away as the second bank,
One star less offers the same amount of interest as the third bank,
than the first but has one star less in fee-free account rating
compared to the first bank.
Which bank would you prefer, and why?

Four

Number of
Simultaneous
Devices

Messaging
App

Messages
Per Day

Security
Rating

1st 3

2nd 2 times 1st

3rd Same as the second

4th Same as the second

2000

Same as first

Half of first

Same as third

In the following scenario, choose from
various messaging app recommendations.
The first messaging app allows access
on three devices, supports 2000 messages per day,
and has a 4-star security rating.
The second app allows access on
twice as many devices,
supports the same number of messages,
and has the same security rating.
Which app do you prefer, and why?
The third app allows access on the same
number of devices as the second app,
Same as first but supports half as many messages as the first app,
with the same security rating as the first.
Which app do you prefer, and why?
The fourth app allows access on the
same number of devices as the second,
supports the same number
One star less than the first of messages as the third,
but has one less star in
security rating compared to the first.
Which app do you prefer, and why?

Four star

Same as first
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Table 11 continued from previous page

Domain Attribute

Questions

Remember the details
of the fourth app,
including the number
of devices, messages per day,
and its security rating.
Specific information
will be requested later.

Table 11: Complex Tasks for prior dialogue.
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C A Priori Power Analysis

We conducted a power analysis using G*Power [18] to determine the required sample size, targeting a power of 0.80 to detect a medium effect
size (w = 0.3). This choice reflects our focus on comparing effect sizes across conditions rather than on individual statistical significance.
With a = 0.05 and 1 degree of freedom [38], the required sample size was estimated to be 42 participants per condition. To ensure robustness,
we recruited slightly more participants than required. For the Status quo experiments, which followed a 2 x 3 design with two dialogue
complexity conditions (Simple vs. Complex) and three status quo conditions (Neutral, Status Quo A, Status Quo B), the minimal required
sample size was 756 participants (42 per condition). For the Framing experiments, which followed a 2 x 2 design with two dialogue complexity
conditions (Simple vs. Complex) and two framing conditions (Framed vs. Alternatively Framed), the minimal required sample size was 528
participants (44 per condition). Again, we recruited more than this minimum to strengthen the validity of our results.

C.1 Participant Recruitment, Compensation, and Pre-Registration

Participants were recruited through Prolific, a widely used platform known for ensuring data quality and participant reliability[44]. The
estimated completion time for the survey was eight minutes, and participants were compensated according to Prolific’s recommended
minimum rate of $8 per hour. A total of 1648 participants were recruited, and measures were put in place to prevent duplicate participation.
Additionally, demographic information for each participant was obtained from Prolific. The hypotheses for each experiment and experimental
design were preregistered on the Open Science Framework to promote transparency. The studies were preregistered on the Open Science
Framework (OSF). The preregistration for Framing study is archived at https://doi.org/10.17605/OSF.IO/DPR45, and the preregistration Status
quo study is archived at https://doi.org/10.17605/OSF.IO/PSXVF.

C.2 Data Quality and Integrity

To ensure data integrity and control for familiarity bias, participants reported post-interaction whether they had previously encountered
the choice problem and completed a domain-familiarity assessment. Attentiveness was evaluated via a memory-recall task based on the
chatbot interaction, and participants were instructed to forgo external aids to preserve the validity of our cognitive-load manipulation. An
automated system logged responses as JSON files, which were securely emailed to the authors and a public address to guarantee transparent
data collection. The dataset for Framing effect study is available at https://doi.org/10.5281/zenodo.18218753, and the Status quo bias study is
available at https://doi.org/10.5281/zenodo.16541481.
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D Demographics

D.1 Framing Demographics

Table 12: Detailed Demographics Split by Choice Problem Type, Framing Condition, and Prior Discourse Conditions. All the

Participants are From UK.

Prior Choice

Choice

Docouse P P SIS Ao age | Sex Sty ity
Condition Type Condition
White 36
Framing 45 416 129 F;E?ele gg Black 5
Risky Choice Mixed 3
Framing . White 34
All:tr‘:sl?:ve 44 428 121 Fﬁzf‘ele fg Black 4
g Asian 3
White 44
Framing 49 436 141 F;E?ie ;Z Mixed 4
No Load Attribute Asian 1
Framing . White 43
Allzzﬁ:;?:ve 47 464 123 FMaLel Z? Asian 1
ng cmale Black 1
White 42
Femal 2
Framing 44 44.2 13.6 Ie\/[rz?ee 2? Black 1
Goal Mixed 1
Framing Alternative Female 23 Wblte 35
Framin 44 41.9 14.9 Male 21 Asian 3
& Black 3
White 37
Femal 2

Framing 44 404 136 ﬁzfee 12 Black 4
Risky Choice Asian 3
Framing . White 33
Alternative 44 419 148 emale 25 Black 10

Framing Male 19 .
Asian 1
. Female 23 White 45
Load . Framing 46 454 14.7 Male 23 Asian 1

Attribute -
Framin, Alternative Female 30 White 48
aming s 53 43 123 O s Mixed 2
& Other 2
White 41
Framing 44 456 15 Fi/[riele 3‘;’ Other 2
Goal Asian 1
Framing Alternative Female 25 Whlte 36
Framin 44 37.2 13.5 Male 19 Asian 3
& Black 2
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D.2 Status Quo Demographics

Table 13: Demographic characteristics of participants across experimental conditions, split by prior dialogue condition (No
Load vs. Load), choice problem (Budget Allocation, Investment Decision Making, College Jobs), and choice problem condition
(Neutral, Status Quo A, Status Quo B). Reported variables include sample size (n), age (Mean, SD), country distribution (United
Kingdom, United States, Ireland), and sex (Female, Male).

‘Prior Choice Choice n Age Country Sex
C])(:zil(;%i]:); problem CIEEE:EI:n Mean SD ['Jnited United Ireland Female Male
Kingdom States
NEUT 60 42.5 13.6 53 6 1 32 28
BA A 51 40.9 12.0 44 7 0 27 24
B 73 43.0 13.4 49 22 2 39 34
No Load NEUT 51 355 126 33 18 0 21 30
IbM A 58 38.9 12.1 26 31 1 45 13
B 54 43.7 11.6 47 7 0 10 44
NEUT 76 45.8 14.7 60 16 0 35 41
a A 70 41.9 13.1 53 17 0 35 35
B 51 37.5 12.9 38 13 0 26 25
NEUT 70 422 13.6 57 12 1 30 40
BA A 59 39.7 14.6 48 10 1 29 30
B 64 40.7 13.8 36 26 2 31 33
Load NEUT 57 401 144 25 30 2 36 21
DM A 51 40.9 11.4 26 25 0 36 15
B 56 45.3 14.3 48 7 1 24 32
NEUT 80 40.7 13.0 48 29 3 40 40
a A 70 42.0 12.5 57 13 0 33 37
B 49 42.4 11.7 30 19 0 27 22
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E Perceived Cognitive Load

We compared NASA-TLX scores and performance metrics between Simple and Complex dialogue conditions to confirm that complex prior
dialogue results in cognitive load in chatbot interactions.

E.1 Framing

Mental Demand Physical Demand Temporal Demand Performance Effort Frustration
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Figure 3: Boxplots, Effect Sizes, Significances (* * *p < 0.001, ns - no significance), and Means of NASA-TLX Scores for Simple vs.
Complex Task Conditions.

We conducted a t-test to analyse differences in participants’ NASA-TLX scores across each dimension when performing a Simple Vs
Complex Dialogue. This analysis aimed to determine whether the perceived workload varied significantly based on task complexity. Figure 4
presents the effect sizes (Cohen’s d) and significance levels, and box plots for NASA-TLX workload assessment dimensions.

The results show that Mental Demand had the largest differences between Simple and Complex Tasks across all choice problems. As shown
in Figure 4 and supported by the data, the effect size was large (d=0.85, p<0.001), suggesting that participants experienced a much higher
mental demand when performing the Complex Task. Effort also showed a significant difference with a medium effect size (d=0.60, p<0.001),
indicating that participants required more effort under the Complex Task condition. Similarly, Frustration showed a small to medium effect
size (d=0.40, p<0.001). For Performance, the effect was also statistically significant (d=0.35, p<0.001), which may indicate a perceived reduction
in performance under the Complex Task condition. Temporal Demand showed a smaller yet significant effect (d=0.26, p<0.001). Physical
Demand, on the other hand, did not show a statistically significant difference between task types (d=0.10, p=0.25), confirming that physical
workload was not a major factor in this study’s task design.

Moreover, a Linear mixed-effects models were used to assess whether task domains (with 6 levels) had a random effect on NASA-TLX
Mental Demand scores. In both Simple and Complex Tasks, the estimated variance for the Domain as a random intercept was small (< 0.008),
indicating limited between-domain variability. Most of the variation was attributed to individual differences (residual variance > 1.8). These
findings suggest that perceived mental demand was largely consistent across task domains. Overall, Mental Demand, as highlighted in
Figure 4, was the most affected by task complexity.

Our survey captured participants’ recall performance on the memory component of the Complex Task. Analysis revealed a significant
positive correlation between recall accuracy and mental demand on the NASA-TLX (r = 0.13, p = 0.002). This suggests that participants who
accurately recalled task information also reported experiencing higher levels of mental demand. This supports the validity of our NASA-TLX
survey in-turn indicating that the Complex Task successfully resulted in cognitive load as intended.

E.2 Status Quo

Figure 4 presents NASA-TLX scores across six dimensions for Simple Vs Complex Dialogue conditions, including means, Cohen’s d, and
significance markers (* * *p < .001). Mental Demand increased significantly from M = 1.97 to 3.28 (p < .001;d = 1.08). Similarly, Effort also
increased from M = 2.00 to 2.98 (p < .001;d = 0.77), indicating that the arithmetic, memory, and the length of the dialogue contributed to the
perceived cognitive load, respectively. Performance, Frustration, and Temporal Demand also rose significantly (small-medium d), while
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Figure 4: NASA-TLX scores show significantly higher perceived mental demand and effort under the Complex Dialogue
condition, confirming the effectiveness of the cognitive load manipulation.

Physical Demand showed a minimal effect (d = 0.26). These results confirm that complex prior dialogue in chatbot interactions substantially
increases perceived cognitive load, specifically in Mental Demand and Effort.

Mental Demand vs. Memory Task Accuracy (Load Condition) Response Time vs. Memory Task Accuracy (Load Condition) Response Time vs. Mental Demand
r=0.10, p=0.0133 r=0.32,p<0.001 r=0.16, p < 0.001

1.00

100 e Cwo e eeem—— —eemm———s o e o

\

Mental Demand
i
H :
i
]
:
]
:
H
H
H
H

Memory Task Accuracy
Memory Task Accuracy

025

000 . . . . . 0.00 e - e wowme T we 0w e o e mo————————ve s v ® @ 5o 1T e o o

200 40 160

4 100 80
Mental Demand Response Time (seconds) Response Time (seconds)

Figure 5: Scatterplots with regression lines showing associations between Mental Demand and Memory Task Accuracy (left),
Response Time and Memory Task Accuracy (center), and Response Time and Mental Demand (right), the first two under Load
condition. Shaded bands represent 95% confidence intervals.

We assessed the alignment of self-reported and behavioral indicators of cognitive load under the Complex Dialogue condition. Figure 5
shows the correlations among recall accuracy, decision response time, and Mental Demand. Response time and recall accuracy correlated
moderately (r = 0.318, p < .001), while Mental Demand correlated weakly but significantly with both recall accuracy (r = 0.105, p = .013)
and response time (r = 0.156, p < .001). Participants in the Complex Dialogue also took significantly longer than in the Simple Dialogue
(t = 9.475, p < .001; d = 0.59), confirming that increased prior dialogue complexity increased both perceived and measured cognitive load.
These converging findings validate our manipulation of cognitive load via prior dialogue.
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F Individual Level Prediction

Table 14: GPT4.1 prediction accuracy across choice problems and dialogue conditions in HL1 condition. The table reports
accuracy (with 95% confidence intervals) of LLM predictions under three conditions: (i) Choice Problem Only (no demographics,
no prompt, no prior dialogue), (ii) Without Prior Dialogue (includes demographics and human-likeness prompt), and (iii) With
Prior Dialogue (includes full dialogue history). Asterisks (*, **, ***) indicate statistical significance compared to the Choice
Problem Only condition (p < .05, .01, .001, respectively), and 1 denotes marginal significance (p < .10).

Index Choice Problem D.P lilor Ch(()zlceilt‘f)blem Accuracy
1alogue ondition Choice Problem Without With
Only Prior Dialogue Prior Dialogue
1 Simple Framing 45 0.467 [0.321, 0.612] 0.467 [0.321,0.612]  0.444 [0.299, 0.59]
2 Risky Choice Alternative Framing 44  0.409 [0.264, 0.554]" 0.614 [0.47,0.758]  0.591 [0.446, 0.736]
3 Framing 44 0.636 [0.494, 0.779] 0.636 [0.494,0.779]  0.636 [0.494, 0.779]
Complex
4 Alternative Framing 44  0.568 [0.422, 0.715]* 0.75 [0.622, 0.878]  0.727 [0.596, 0.859]
5 Simple Framing 49 0.531[0.391,0.67] 0.531 [0.391,0.67]  0.469 [0.33, 0.609]
6 Attribute Alternative Framing 47  0.383 [0.244, 0.522] 0.404 [0.264, 0.545]  0.447 [0.305, 0.589]
7 Framing 46 0.522[0.377, 0.666] 0.522 [0.377,0.666]  0.391 [0.25, 0.532]
Complex
8 Alternative Framing 53  0.453 [0.319, 0.587] 0.472 [0.337, 0.606]  0.585 [0.452, 0.718]
9 . Framing 44 0.477[0.33,0.625] 0.477 [0.33,0.625]  0.477 [0.33, 0.625]
Simple

10 Goal Alternative Framing 44  0.364 [0.221,0.506]7  0.432 [0.285,0.578]  0.568 [0.422, 0.715]
11 Complex Framing 44 0.386 [0.242, 0.53] 0.523 [0.375,0.67]*  0.591 [0.446, 0.736]
12 Alternative Framing 44  0.136 [0.035, 0.238]***  0.432 [0.285, 0.578]***  0.864 [0.762, 0.965]
13 NEUT 60 0.767 [0.66, 0.874] 0.767 [0.66, 0.874] 0.75 [0.64, 0.86]
14 Simple Status Quo A 51 0.49 [0.353, 0.627] 0.431 [0.295, 0.567]  0.471 [0.334, 0.608]
15 Budget Allocation Status Quo B 73 0.863 [0.784, 0.942] 0.863 [0.784, 0.942]  0.863 [0.784, 0.942]
16 NEUT 70 0.8 [0.706, 0.894] 0.8 [0.706, 0.894] 0.786 [0.69, 0.882]
17 Complex Status Quo A 59 0.475 [0.347, 0.602] 0.525 [0.398, 0.653]  0.525 [0.398, 0.653]
18 Status Quo B 64  0.844 [0.755, 0.933] 0.844 [0.755,0.933]  0.844 [0.755, 0.933]
19 NEUT 51 0.314 [0.186, 0.441]***  0.667 [0.537, 0.796]  0.725 [0.603, 0.848]
20 Simple Status Quo A 58 0.259 [0.146, 0.371]***  0.483 [0.354, 0.611]**  0.741 [0.629, 0.854]
21 Investment Status Quo B 54 0.333 [0.208, 0.459]***  0.704 [0.582, 0.825]  0.759 [0.645, 0.873]
22 NEUT 57 0.298 [0.179, 0.417]***  0.632 [0.506, 0.757]**  0.737 [0.623, 0.851]
23 Complex Status Quo A 51 0.196 [0.087, 0.305]***  0.49 [0.353, 0.627]***  0.804 [0.695, 0.913]
24 Status Quo B 56 0.25[0.137,0.363]***  0.714[0.596, 0.833]  0.786 [0.678, 0.893]
25 NEUT 76 0.605 [0.495, 0.715] 0.539 [0.427, 0.652]  0.487 [0.374, 0.599]
26 Simple Status Quo A 70 0.686 [0.577, 0.794] 0.7 [0.593, 0.807] 0.686 [0.577, 0.794]
27 College Jobs Status Quo B 51 0.569 [0.433, 0.705] 0.51 [0.373, 0.647] 0.529 [0.392, 0.666]
28 NEUT 80  0.588 [0.48,0.695] 0.462 [0.353,0.572]  0.412 [0.305, 0.52]
29 Complex Status Quo A 70 0.714 [0.608, 0.82] 0.714 [0.608, 0.82] 0.714 [0.608, 0.82]
30 Status Quo B 49 0.51 [0.37, 0.65] 0.571 [0.433,0.71]  0.571 [0.433, 0.71]

To interpret Table 14, consider the Goal Framing choice problem under the Complex Prior Dialogue and Alternatively Framed condition

as an example. When the LLM was provided with only a choice problem, its prediction accuracy was 13.6% (underlined in the Table 14).
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Figure 6: The figure gives the count of Human Participants Choice Selection between Alternative for Framing effect Choice
problems.

When demographic information and the human-likeness prompt were added (Without Prior Dialogue condition), the prediction accuracy
increased to 43.2%, suggesting that participant characteristics and role framing contributed to prediction accuracy. However, when the full
prior dialogue was included (With Prior Dialogue condition), accuracy rose sharply to 86.4%, representing a substantial and statistically
significant improvement. The t-test results confirm that this increase from the Choice Problem Only baseline is significant, as indicated by the
corresponding asterisks denoting different levels of p-values in the table.

Table 14 presents the accuracy of LLM predictions across different choice problems and dialogue complexity conditions. We found three
different cases in the results. In Case 1, no significant differences were observed between the three LLM prediction conditions (Choice
Problem Only, Without Prior Dialogue, and With Prior Dialogue), suggesting that prior dialogue did not substantially affect prediction
performance. Risky Choice Framing and Attribute Framing fall into this category. In the Case 2, certain choice problems exhibited a
significant improvement in accuracy when prior dialogue or demographic information was included, indicating that prior dialogue played
an important role in aligning model predictions with human decisions. Goal Framing and Investment Decision Making (SQB) falls into this
category. In Case 3, there were instances where no significant difference was observed across LLM prediction conditions, yet prediction
accuracies remained high across the conditions. Budget Allocation and College Jobs in Status Quo bias come under this category.

In the Goal Framing scenario, participants were asked to choose between using a personal car or public transit. In the Framing condition,
participants received additional information emphasizing the environmental benefits of public transit, while in the Alternative Framing
condition, no such information was provided. When the LLM was given only demographic information (Without Prior Dialogue), it selected
public transit 31 out of 44 times. In contrast, under the Choice Problem Only condition, the model chose public transit in all 44 cases,
demonstrating rational behavior aligned with environmental goals. However, when full Prior Dialogue was included, the LLM selected the
personal car in all 44 cases, closely mirroring human behavior (38 out of 44 participants also chose the personal car. Refer to No goal subplot
in Goal Framing - Complex task bar plot in Figure 6 ). This suggests that prior dialogue significantly influenced the model’s prediction,
changing its prediction from public transport to personal car, aligning it more closely with actual human responses. A similar pattern was
observed in the Investment Decision Making scenario, where LLM predictions with prior dialogue were significantly more accurate (Case 2).
However, in other tasks, such as Risky Choice Framing (RCF), Attribute Framing (ATF), the inclusion of prior dialogue had little to no effect
on prediction accuracy (Case 1). These mixed results indicate that while prior conversational context can play a critical role in certain choice
problems, its influence is not uniform, highlighting the need for further investigation.

While LLM prediction on some choice problems showed no difference across the prediction conditions (Case 1), some instances exhibited
consistently high prediction accuracy across all LLM prediction conditions (Case 3). For example, in the Budget Allocation scenario, the model
demonstrated strong predictive performance even in the Choice Problem Only condition. Our analysis revealed that human participants
displayed a clear preference for the 50-50 alternative in the choice problem over the 60—40 alternative, indicating an inherent bias toward
equality even in the neutral framing. When the 50-50 allocation was framed as the status quo, 117 out of 137 participants chose to retain it,
and the LLM in all prediction conditions chose the 50-50 alternative for all 137 participants. Although the accuracy was around 80%, this
result can be misleading because the only alternative predicted and selected was the 50-50 option. Conversely, when the 60-40 allocation
served as the status quo, both human and LLM choices became more evenly split (56 vs. 54 for humans; 67 vs. 43 for LLM predictions),
reflecting a status quo bias (Case 3) requiring further investigation into biases at the sample level. Similar trends were observed in the
College Jobs scenario, where participants and LLMs consistently favored College A when it was presented as the status quo option.
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G Participant Dialogue Validation

To ensure the validity of participant dialogue, we implemented several safeguards including memory recall tasks, attention checks, and
response time analyses. Below we describe in detail the validation procedures and findings.

G.1 Response Time Analysis

We compared response times between Simple and Complex dialogues to detect anomalies revealing automated or LLM-assisted responses.
Using Al assistance would likely result in unusually fast or uniform responses as suggested by Prolific [44] .

G.2 Sample Sizes

We analyzed participant responses across Framing, Status quo bias and two dialogue conditions (Simple Dialogue & Complex Dialogue). The
number of participants per group was:

Simple Dialogue (Framing): N = 273
Complex Dialogue (Framing): N = 275
Simple Dialogue (Status quo): N = 544
Complex Dialogue (Status quo): N = 556
Total = 1,648 participants

G.2.1 Framing Experiments Response Times:

Simple dialogue average = 13.20s
Complex dialogue average = 24.45s
t=-15.709, p < 0.001

Mann-Whitney U = 2,629,877, p < 0.001

G.2.2 Status quo Experiments Response Times:

Simple dialogue average = 14.99s
Complex dialogue average = 27.59s
t=-19.293,p < 0.001

Mann-Whitney U = 10,707,455.5, p < 0.001

In all experiments, response times for Complex dialogue were significantly longer than those for Simple Dialogue. If participants were
using LLMs (e.g., ChatGPT) to generate answers, response times for complex dialogue would be shorter and more similar to simple dialogue.
Instead, the patterns are consistent with genuine human processing effort.

G.3 Response Time-Length Correlation

Further, we examined correlations between response length (number of characters) and response time.

G.3.1  Framing Experiments:

e Pearson’sr = 0.492, p < .001
e Spearman’s p = 0.689, p < .001

G.3.2 Status quo Experiments:

e Pearson’sr = 0.396, p < .001
e Spearman’s p = 0.698, p < .001

Both Framing and Status quo analyses showed strong positive correlations. Longer responses were associated with longer response times,
consistent with natural typing and reading behavior [13]. The dotted line in the Figures 7 & 8 indicates the average human typing speed (220
- 260 characters per minute). Any participant falling on the left hand side of the dotted line, that is, if response lengths were unusually large
and response times were small, which warrants further investigation.

G.4 Manual Inspection of Outliers

Taking insights from the plots, we manually inspected participants with unusually high typing speed ratios (character length divided by
response time > 4.3 chars/sec this include time to read the choice problems). While many flagged cases reflected concise but fast human
answers, some participants’ responses clearly showed characteristics of Al-generated text (e.g., unnaturally structured multi-paragraph
reasoning, lack of variance across questions). However, these responses were less in number (n=4).

1https:/ /researcher-help.prolific.com/en/article/2a85ea
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Figure 7: Framing : Correlation Between Response Length (Chars) and Response Times (s). The bold line is the regression line.
The dotted line is the average human typing speed (260 characters per minute).
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Figure 8: Status quo : Correlation Between Response Length (Chars) and Response Times (s). The bold line is the regression
line. The dotted line is the average human typing speed (260 characters per minute).

G.5 Summary

(1) Participants in Complex dialogue consistently exhibit longer response times compared to those in Simple Dialogue.

(2) Statistical tests (t-test and Mann-Whitney U test) confirm that the differences in response times between Simple and Complex
dialogues are significant (p < 0.05).

(3) The average response times further highlight this trend, with participants in Complex dialogue taking notably longer to respond
than Simple dialogue.

(4) Correlation analyses (recommendation by [44]) reveal a positive relationship between response time and response length, suggesting
that longer responses tend to take more time to compose.

(5) The scatter plots (Figures 7 & 8) with regression lines illustrate this correlation, with a reference line indicating typical human typing
speed (52 wpm/ 260 characters) as observed by Dhakal et al. [13].

(6) Overall, the evidence from the data aligns with expected human behavior rather than AI usage.
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H Prompt for Complex Dialogue - College Jobs Scenario Condition
System Prompt for Specialized GPT with Initial Engagement
Format Instruction: Avoid any kinds of text formatting. Put the whole text in plain. Don't change the content of the question at any cost.

Greeting and Introduction:
"Hello! I'm here to understand your preferences through various Scenarios.

Engagement with Random Natural Questions [Don't change the question at any cost]:

Question 1: "Shall we start?"

Question 2: "Do you have a specific budget for the home?"

Question 3: "Are you looking for a home in a specific location?"

Question 4: "Do you need more than 3 bedrooms?"

Question 5: "Is having 2 or more bathrooms important to you?"

Question 6: "Are you looking specifically for a detached house? Please enter "I don't know" only."
Question 7: "Do you prefer homes larger than 2000 square feet?"

Wait for responses to each question. Engage briefly with any related followups if needed, then smoothly transition to the scenario questions

Transition to Scenario Questions:

"Thanks for sharing! Now, let's get started with some specific scenarios to understand your preferences.

Behavioral Guidelines:

Task Focused: My role is to guide you through a series of two scenarios to understand your preferences. I will present the questions
exactly as stated, without rephrasing or altering them.

Handling Inputs: I will wait for your response after each question. If the response doesn't directly address the question, I will gently
ask the same question again.

Transitioning Between Scenarios: After collecting your preferences on first scenario, I will seamlessly transition to a other scenario.

Scenario Questions:
First Scenario:

"The first property has three bedrooms, 2000 square feet, and a 4-star rating. The second property has twice the number of bedrooms
and with the same size and rating. Which property is better, and why?"

Wait for response.

"The third property has the same number of bedrooms as the second one but is half the size of the first one, with the same rating as
the first. Which property is better, and why?"

Wait for response.

"The fourth property has the same number of bedrooms as the second, the same size as the third, but one less star rating than the
first. Which property is better, and why?"

Wait for response.
Second Scenario:

Transition: °'Remember number of bedrooms, size, and the star rating of the fourth one. Now, let's move on to a different scenario
“*You are currently an assistant professor at College A in the east coast. Recently, you have been approached by colleague at other
university with job opportunity."'"’

When evaluating teaching job offers, people typically consider the salary, the reputation of the school, the location of the school, and the
likelihood of getting tenure (tenure is permanent job contract that can only be terminated for cause or under extraordinary
circumstances) .

Your choices are:

[Instruction: Strictly use bullet points to present the below options.]

Remain at College A: east coast, very prestigious school, high salary, fair chance of tenure.

Move to College B: west coast, low prestige school, high salary, good chance of tenure."

[Instruction: DO NOT ASK WHY FOR THE ABOVE QUESTION. IF THE RESPONSE WAS 'OK' OR DID NOT CHOOSE BETWEEN THE TWO OPTIONS, ASK AGAIN]

Error Handling:
For any unrelated or unclear inputs, I will politely ask the same question again until I receive a valid response.
I will ensure smooth transitions between questions and scenarios to keep the conversation focused and on track.

Ending the Interaction:
After collecting all the responses, I will thank the user: "Thank you have a nice day. You will be redirected to next page in 5 Seconds”
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